Abstract
Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology - the injection of squeezed light - offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.
Original language | English |
---|---|
Pages (from-to) | 962-965 |
Number of pages | 4 |
Journal | Nature Physics |
Volume | 7 |
Issue number | 12 |
DOIs | |
Publication status | Published - 01 Jan 2011 |
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'A gravitational wave observatory operating beyond the quantum shot-noise limit'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature Physics, Vol. 7, No. 12, 01.01.2011, p. 962-965.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - A gravitational wave observatory operating beyond the quantum shot-noise limit
AU - Abadie, J.
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abernathy, M.
AU - Adams, C.
AU - Adhikari, R.
AU - Affeldt, C.
AU - Ajith, P.
AU - Allen, B.
AU - Allen, G. S.
AU - Amador Ceron, E.
AU - Amariutei, D.
AU - Amin, R. S.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Arai, K.
AU - Arain, M. A.
AU - Araya, M. C.
AU - Aston, S. M.
AU - Atkinson, D.
AU - Aufmuth, P.
AU - Aulbert, C.
AU - Aylott, B. E.
AU - Babak, S.
AU - Baker, P.
AU - Ballmer, S.
AU - Barker, D.
AU - Barr, B.
AU - Barriga, P.
AU - Barsotti, L.
AU - Barton, M. A.
AU - Bartos, I.
AU - Bassiri, R.
AU - Bastarrika, M.
AU - Batch, J.
AU - Bauchrowitz, J.
AU - Behnke, B.
AU - Bell, A. S.
AU - Belopolski, I.
AU - Benacquista, M.
AU - Berliner, J. M.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Beveridge, N.
AU - Beyersdorf, P. T.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Birch, J.
AU - Biswas, R.
AU - Black, E.
AU - Blackburn, J. K.
AU - Blackburn, L.
AU - Blair, D.
AU - Bland, B.
AU - Bock, O.
AU - Bodiya, T. P.
AU - Bogan, C.
AU - Bondarescu, R.
AU - Bork, R.
AU - Born, M.
AU - Bose, S.
AU - Brady, P. R.
AU - Braginsky, V. B.
AU - Brau, J. E.
AU - Breyer, J.
AU - Bridges, D. O.
AU - Brinkmann, M.
AU - Britzger, M.
AU - Brooks, A. F.
AU - Brown, D. A.
AU - Brummitt, A.
AU - Buonanno, A.
AU - Burguet-Castell, J.
AU - Burmeister, O.
AU - Byer, R. L.
AU - Cadonati, L.
AU - Camp, J. B.
AU - Campsie, P.
AU - Cannizzo, J.
AU - Cannon, K.
AU - Cao, J.
AU - Capano, C. D.
AU - Caride, S.
AU - Caudill, S.
AU - Cavagliá, M.
AU - Cepeda, C.
AU - Chalermsongsak, T.
AU - Chalkley, E.
AU - Charlton, P.
AU - Chelkowski, S.
AU - Chen, Y.
AU - Christensen, N.
AU - Cho, H.
AU - Chua, S. S.Y.
AU - Chung, S.
AU - Chung, C. T.Y.
AU - Ciani, G.
AU - Clara, F.
AU - Clark, D. E.
AU - Clark, J.
AU - Clayton, J. H.
AU - Conte, R.
AU - Cook, D.
AU - Corbitt, T. R.
AU - Cordier, M.
AU - Cornish, N.
AU - Corsi, A.
AU - Costa, C. A.
AU - Coughlin, M.
AU - Couvares, P.
AU - Coward, D. M.
AU - Coyne, D. C.
AU - Creighton, J. D.E.
AU - Creighton, T. D.
AU - Cruise, A. M.
AU - Cumming, A.
AU - Cunningham, L.
AU - Cutler, R. M.
AU - Dahl, K.
AU - Danilishin, S. L.
AU - Dannenberg, R.
AU - Danzmann, K.
AU - Daudert, B.
AU - Daveloza, H.
AU - Davies, G.
AU - Daw, E. J.
AU - Dayanga, T.
AU - DeBra, D.
AU - Degallaix, J.
AU - Dent, T.
AU - Dergachev, V.
AU - DeRosa, R.
AU - DeSalvo, R.
AU - Dhurandhar, S.
AU - DiGuglielmo, J.
AU - DiPalma, I.
AU - Díz, M.
AU - Donovan, F.
AU - Dooley, K. L.
AU - Dorsher, S.
AU - Drever, R. W.P.
AU - Driggers, J. C.
AU - Du, Z.
AU - Dumas, J. C.
AU - Dwyer, S.
AU - Eberle, T.
AU - Edgar, M.
AU - Edwards, M.
AU - Effler, A.
AU - Ehrens, P.
AU - Engel, R.
AU - Etzel, T.
AU - Evans, K.
AU - Evans, M.
AU - Evans, T.
AU - Factourovich, M.
AU - Fairhurst, S.
AU - Fan, Y.
AU - Farr, B. F.
AU - Farr, W.
AU - Fazi, D.
AU - Fehrmann, H.
AU - Feldbaum, D.
AU - Finn, L. S.
AU - Fisher, R. P.
AU - Flanigan, M.
AU - Foley, S.
AU - Forsi, E.
AU - Fotopoulos, N.
AU - Frede, M.
AU - Frei, M.
AU - Frei, Z.
AU - Freise, A.
AU - Frey, R.
AU - Fricke, T. T.
AU - Friedrich, D.
AU - Fritschel, P.
AU - Frolov, V. V.
AU - Fulda, P. J.
AU - Fyffe, M.
AU - Ganija, M. R.
AU - Garcia, J.
AU - Garofoli, J. A.
AU - Geng, R.
AU - Gergely, L.
AU - Ghosh, S.
AU - Giaime, J. A.
AU - Giampanis, S.
AU - Giardina, K. D.
AU - Gill, C.
AU - Goetz, E.
AU - Goggin, L. M.
AU - González, G.
AU - Gorodetsky, M. L.
AU - Goßler, S.
AU - Graef, C.
AU - Grant, A.
AU - Gras, S.
AU - Gray, C.
AU - Gray, N.
AU - Greenhalgh, R. J.S.
AU - Gretarsson, A. M.
AU - Grosso, R.
AU - Grote, H.
AU - Grunewald, S.
AU - Guido, C.
AU - Gupta, R.
AU - Gustafson, E. K.
AU - Gustafson, R.
AU - Ha, T.
AU - Hage, B.
AU - Hallam, J. M.
AU - Hammer, D.
AU - Hammond, G.
AU - Hanks, J.
AU - Hanna, C.
AU - Hanson, J.
AU - Harms, J.
AU - Harry, G. M.
AU - Harry, I. W.
AU - Harstad, E. D.
AU - Hartman, M. T.
AU - Haughian, K.
AU - Hayama, K.
AU - Heefner, J.
AU - Heintze, M. C.
AU - Hendry, M. A.
AU - Heng, I. S.
AU - Heptonstall, A. W.
AU - Herrera, V.
AU - Hewitson, M.
AU - Hild, S.
AU - Hoak, D.
AU - Hodge, K. A.
AU - Holt, K.
AU - Hong, T.
AU - Hooper, S.
AU - Hosken, D. J.
AU - Hough, J.
AU - Howell, E. J.
AU - Hughey, B.
AU - Huynh-Dinh, T.
AU - Husa, S.
AU - Huttner, S. H.
AU - Ingram, D. R.
AU - Inta, R.
AU - Isogai, T.
AU - Ivanov, A.
AU - Izumi, K.
AU - LIGO Scientific Collaboration
PY - 2011/1/1
Y1 - 2011/1/1
N2 - Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology - the injection of squeezed light - offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.
AB - Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology - the injection of squeezed light - offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.
KW - Gravitational waves
UR - http://www.scopus.com/inward/record.url?scp=84921022931&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921022931&partnerID=8YFLogxK
U2 - 10.1038/NPHYS2083
DO - 10.1038/NPHYS2083
M3 - Article
SN - 1745-2473
VL - 7
SP - 962
EP - 965
JO - Nature Physics
JF - Nature Physics
IS - 12
ER -