TY - JOUR
T1 - A new silk
T2 - Mechanical, compositional, and morphological characterization of leafhopper (Kahaono montana) silk
AU - Chang, Jung C.
AU - Fletcher, Murray J.
AU - Gurr, Geoffrey
AU - Kent, Deborah S.
AU - Gilbert, Robert G.
N1 - Imported on 12 Apr 2017 - DigiTool details were: Journal title (773t) = Journal of Polymer Research. ISSNs: 1022-9760;
PY - 2005
Y1 - 2005
N2 - The mechanical properties, amino acid composition, internal morphology, and solvent-induced interaction of silk produced by the endemic Australian leafhopper, Kahaono montana Evans (Hemiptera: Cicadellidae) were studied. Ion plasma etching/scanning electron microscopy examination of the internal morphology revealed a skin'core structure, with bands in the core region aligned regularly in a transverse direction to the fibre axis, separated by a nominal spacing of 100 nm. The internal structure of the silk was compared with those from spider Eriophora transmarina (Keyserling) (Araneida: Araneidae) radial thread and silkworm (Bombyx mori). The amino acid composition of K. montana silk was determined using HPLC, and was found to be dominated by small amino acids: Serine, alanine and glycine. The silk'solvent interaction was tested using selected aqueous, organic and surfactant solutions, and the solubility of the silk was found depend primarily on the pH and ionic strength of the solvent. Tensile tests showed that the silk has considerably weaker mechanical properties than spider silk and silkworm silk. The differences in mechanical properties of K. montana silk compared with spider and silkworm silk are attributed to the distinction in amino acid composition ratio and internal morphology, and are likely to reflect the functions of the silks in these species.
AB - The mechanical properties, amino acid composition, internal morphology, and solvent-induced interaction of silk produced by the endemic Australian leafhopper, Kahaono montana Evans (Hemiptera: Cicadellidae) were studied. Ion plasma etching/scanning electron microscopy examination of the internal morphology revealed a skin'core structure, with bands in the core region aligned regularly in a transverse direction to the fibre axis, separated by a nominal spacing of 100 nm. The internal structure of the silk was compared with those from spider Eriophora transmarina (Keyserling) (Araneida: Araneidae) radial thread and silkworm (Bombyx mori). The amino acid composition of K. montana silk was determined using HPLC, and was found to be dominated by small amino acids: Serine, alanine and glycine. The silk'solvent interaction was tested using selected aqueous, organic and surfactant solutions, and the solubility of the silk was found depend primarily on the pH and ionic strength of the solvent. Tensile tests showed that the silk has considerably weaker mechanical properties than spider silk and silkworm silk. The differences in mechanical properties of K. montana silk compared with spider and silkworm silk are attributed to the distinction in amino acid composition ratio and internal morphology, and are likely to reflect the functions of the silks in these species.
U2 - 10.1016/j.polymer.2005.06.077
DO - 10.1016/j.polymer.2005.06.077
M3 - Article
SN - 1022-9760
VL - 46
SP - 7909
EP - 7917
JO - Journal of Polymer Research
JF - Journal of Polymer Research
IS - 19
ER -