Abstract

Falls by elderly individuals are a major issue in modern health care. A significant amount of research has been done in this domain. In this paper, we have proposed a hybrid solution for fall detection by using body part tracking and human body acceleration. The paper finds that in most cases vision-based fall detection systems work better and give a more accurate result when compared to non-vision-based systems because of the limitations of non-vision based systems (e.g., people forget to wear the wearable detection devices). The proposed system improves the accuracy of the state-of-the-art solution and reduces its computation cost. The vertical distances between head and body center, and human body acceleration are the features used in the proposed method and a Support Vector Machine (SVM) classifier is used to classify the outcome into two classes. The depth image from a Kinect Camera was used as an input to avoid any privacy issues that may occur by using RGB-based texture images, and the events were classified as an activity of daily living (ADL) or a fall.

Original languageEnglish
Title of host publication2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)
Place of PublicationUnited States
PublisherIEEE, Institute of Electrical and Electronics Engineers
Number of pages8
ISBN (Electronic)9781728194370
ISBN (Print)9781728194387 (Print on demand)
DOIs
Publication statusE-pub ahead of print - 09 Mar 2021
Event5th IEEE International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, CITISIA 2020: CITISIA 2020 - Charles Sturt University Sydney campus, Sydney, Australia
Duration: 25 Nov 202027 Nov 2020
https://web.archive.org/web/20201128085551/https://ieee-citisia.org/ (Conference website)
https://web.archive.org/web/20210124015105/https://ieee-citisia.org/wp-content/uploads/2020/11/Conference-Program-new1.pdf (Conference program)
https://ieeexplore.ieee.org/xpl/conhome/9371766/proceeding?pageNumber=4 (Full paper proceedings)

Publication series

NameCITISIA 2020 - IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, Proceedings

Conference

Conference5th IEEE International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, CITISIA 2020
Country/TerritoryAustralia
CitySydney
Period25/11/2027/11/20
OtherThe “Conference on Innovative Technologies in Intelligent Systems & Industrial Applications” (CITISIA) is a student conference that aims to provide students of higher learning institutions with a platform for presenting their own projects. It is also a measure of recognition of students’ professional and technical achievements – by industries and international organizations such as IEEE. This conference is designed to facilitate exchanges of ideas through communication, networking and learning from others, for students and IEEE Chapters in terms of greater collaboration.
Internet address

Fingerprint

Dive into the research topics of 'A novel hybrid fall detection technique using body part tracking and acceleration'. Together they form a unique fingerprint.

Cite this