A preliminary investigation of the potential of sentinel-1 radar to estimate pasture biomass in a grazed, pasture landscape

Richard Azu Crabbe, David William Lamb, Clare Edwards, Karl Andersson, Derek Schneider

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Knowledge of the above ground biomass (AGB) of large pasture fields is invaluable as it assists graziers to set stocking rate. In this preliminary evaluation, we investigated the response of Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data to biophysical variables (leaf area index,height and AGB) for native pasture grasses on a hilly, pastoral farm. The S1 polarimetric parameters such as back scattering coefficients, scattering entropy, scattering anisotropy, and mean scattering angle were regressed against the widely used morphological parameters of leaf area index (LAI) and height, as well as AGB of pasture grasses. We found S1 data to be more responsive to the pasture parameters when using a 1 m digital elevation model (DEM) to ortho rectify the SAR image than when we employed the often-used Shuttle Radar Topography 30 m and 90 m Missions. With the 1m DEM analysis, a significant quadratic relationship was observed between AGB and VH cross-polarisation (R2 = 0.71), and significant exponential relationships between polarimetric entropy and LAI and AGB (R2 = 0.53 and 0.45, respectively). Similarly, the mean scattering angle showed a significant exponential relationship with LAI and AGB (R2 = 0.58 and R2 = 0.83, respectively). The study also found a significant quadratic relationship between the mean scattering angle and pasture height (R2 = 0.72). Despite a relatively small dataset and single season, the mean scattering angle in conjunction with a generalised additive model (GAM) explained 73% of variance in the AGB estimates. The GAM model estimated AGB with a root mean square error of 392 kg/ha over a range in pasture AGB of 443 kg/ha to 2642 kg/ha with pasture LAI ranging from 0.27 to 1.87 and height 3.25 cm to 13.75 cm. These performance metrics, while indicative at best owing to the limited datasets used, are nonetheless encouraging in terms of the application of S1 data to evaluating pasture parameters under conditions which may preclude use of traditional optical remote sensing systems.
Original languageEnglish
Article number872
Number of pages19
JournalRemote Sensing
Volume11
Issue number7
DOIs
Publication statusPublished - 10 Apr 2019

Fingerprint

Dive into the research topics of 'A preliminary investigation of the potential of sentinel-1 radar to estimate pasture biomass in a grazed, pasture landscape'. Together they form a unique fingerprint.

Cite this