TY - JOUR
T1 - A rationale for assessing the lower-body power profile in team sport athletes
AU - Nibali, Maria
AU - Chapman, Dale W.
AU - Robergs, Robert
AU - Drinkwater, Eric
N1 - Imported on 12 Apr 2017 - DigiTool details were: month (773h) = February, 2013; Journal title (773t) = Journal of Strength and Conditioning Research. ISSNs: 1064-8011;
PY - 2013/2
Y1 - 2013/2
N2 - Training at the load that maximizes peak mechanical power (Pmax) is considered superior for the development of power. We aimed to identify the Pmax load ('optimal load') in the jump squat and to quantify small, moderate, large, and very large substantial differences in power output across a spectrum of loads to identify loads that are substantially different to the optimal, and lastly, to investigate the nature of power production (load-force-velocity profiles). Professional Australian Rules Football (ARF; n = 16) and highly trained Rugby Union (RU; n = 20) players (subdivided into stronger [SP] vs. weaker [WP] players) performed jump squats across incremental loads (0'60 kg). Substantial differences in peak power (W·kg'1) were quantified as 0.2'2.0 of the log transformed between-athlete SD at each load, backtransformed and expressed as a percent with 90% confidence limits (CL). A 0-kg jump squat maximized peak power (ARF: 57.7 ± 10.8 W·kg'1; RU: 61.4 ± 8.5 W·kg'1; SP: 64.4 ± 7.5 W·kg'1; WP: 54.8 ± 9.5 W·kg'1). The range for small to very large substantial differences in power output was 4.5'55.9% (CL: ×/÷1.36) and 2.8'32.4% (CL: ×/÷1.31) in ARF and RU players, whereas in SP and WP, it was 3.7'43.1% (CL: ×/÷1.32) and 4.3'51.7% (CL: ×/÷1.36). Power declined per 10-kg increment in load, 14.1% (CL: ±1.6) and 10.5% (CL: ±1.5) in ARF and RU players and 12.8% (CL: ±1.9) and 11.3% (CL: ±1.7) in SP and WP. The use of a 0-kg load is superior for the development of jump squat maximal power, with moderate to very large declines in power output observed at 10- to 60-kg loads. Yet, performance of heavier load jump squats that are substantially different to the optimal load are important in the development of sport-specific force-velocity qualities and should not be excluded.
AB - Training at the load that maximizes peak mechanical power (Pmax) is considered superior for the development of power. We aimed to identify the Pmax load ('optimal load') in the jump squat and to quantify small, moderate, large, and very large substantial differences in power output across a spectrum of loads to identify loads that are substantially different to the optimal, and lastly, to investigate the nature of power production (load-force-velocity profiles). Professional Australian Rules Football (ARF; n = 16) and highly trained Rugby Union (RU; n = 20) players (subdivided into stronger [SP] vs. weaker [WP] players) performed jump squats across incremental loads (0'60 kg). Substantial differences in peak power (W·kg'1) were quantified as 0.2'2.0 of the log transformed between-athlete SD at each load, backtransformed and expressed as a percent with 90% confidence limits (CL). A 0-kg jump squat maximized peak power (ARF: 57.7 ± 10.8 W·kg'1; RU: 61.4 ± 8.5 W·kg'1; SP: 64.4 ± 7.5 W·kg'1; WP: 54.8 ± 9.5 W·kg'1). The range for small to very large substantial differences in power output was 4.5'55.9% (CL: ×/÷1.36) and 2.8'32.4% (CL: ×/÷1.31) in ARF and RU players, whereas in SP and WP, it was 3.7'43.1% (CL: ×/÷1.32) and 4.3'51.7% (CL: ×/÷1.36). Power declined per 10-kg increment in load, 14.1% (CL: ±1.6) and 10.5% (CL: ±1.5) in ARF and RU players and 12.8% (CL: ±1.9) and 11.3% (CL: ±1.7) in SP and WP. The use of a 0-kg load is superior for the development of jump squat maximal power, with moderate to very large declines in power output observed at 10- to 60-kg loads. Yet, performance of heavier load jump squats that are substantially different to the optimal load are important in the development of sport-specific force-velocity qualities and should not be excluded.
U2 - 10.1519/JSC.0b013e3182576feb
DO - 10.1519/JSC.0b013e3182576feb
M3 - Article
C2 - 22505130
SN - 1064-8011
VL - 27
SP - 388
EP - 397
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - 2
ER -