A voltage doubler boost converter circuit for piezoelectric energy harvesting systems

Abdul Haseeb, Mahesh Edla, Mustafa Ucgul, Fendy Santoso, Mikio Deguchi

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
74 Downloads (Pure)

Abstract

This paper describes the detailed modelling of a vibration-based miniature piezoelectric device (PD) and the analysis modes of operation and control of a voltage doubler boost converter (VDBC) circuit to find the PD’s optimal operating conditions. The proposed VDBC circuit integrates a conventional voltage doubler (VD) circuit with a step-up DC-DC converter circuit in modes 1–4, while a non-linear synchronisation procedure of a conventional boost converter circuit is employed in modes 5–6. This integration acted as the voltage boost circuit without utilising duty cycles and complex auxiliary switching components. In addition, the circuit does not require external trigger signals to turn on the bidirectional switches. This facilitates the operation of VDBC circuit at very low AC voltage (Vac ≥ 0.5 V). Besides this, the electrical characteristics of VDBC circuit’s input (i.e., PD) perfectly concurs with the studied testing scenarios using impedance power sources (mechanical shaker). Firstly, the proposed circuit which can rectify the PD’s output was tested at both constant input voltage with varying excitation frequency and constant excitation frequency with varying input voltage. Next, a small-scale solar battery was charged to validate the feasibility of the performance of the proposed VDBC circuit. The proposed circuit achieved a maximum output voltage of 11.7 Vdc with an output power of 1.37 mW. In addition, the rectified voltage waveform is stable due to the sminimisation of the ripples. In addition, the performance of VDBC circuit was verified by comparing the achieved results with previously published circuits in the literature. The results show that the proposed VDBC circuit outperformed existing units as described in the literature regarding output voltage and power. The developed rectifier circuit is suitable for various real-life applications such as energy harvesting and battery charging.
Original languageEnglish
Article number1631
Number of pages19
JournalEnergies
Volume16
Issue number4
DOIs
Publication statusPublished - Feb 2023

Fingerprint

Dive into the research topics of 'A voltage doubler boost converter circuit for piezoelectric energy harvesting systems'. Together they form a unique fingerprint.

Cite this