Addressing biophysical constraints for Australian farmers applying low rates of composted dairy waste to soil

Richard C. Hayes, Jeffrey I. McCormick, Albert A. Oates, Graham J. Poile, Mark K. Conyers, Matthew J. Gardner, Andrew Price, Patricia O'Keeffe, Guangdi D. Li

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
26 Downloads (Pure)


This study examined the response of forage crops to composted dairy waste (compost) applied at low rates and investigated effects on soil health. The evenness of spreading compost by commercial machinery was also assessed. An experiment was established on a commercial dairy farm with target rates of compost up to 5 t ha ⁻¹ applied to a field containing millet [ Echinochloa esculenta (A. Braun) H. Scholz] and Pasja leafy turnip ( Brassica hybrid). A pot experiment was also conducted to monitor the response of a legume forage crop (vetch; Vicia sativa L.) on three soils with equivalent rates of compost up to 20 t ha ⁻¹ with and without ‘additive blends’ comprising gypsum, lime or other soil treatments. Few significant increases in forage biomass were observed with the application of low rates of compost in either the field or pot experiment. In the field experiment, compost had little impact on crop herbage mineral composition, soil chemical attributes or soil fungal and bacterial biomass. However, small but significant increases were observed in gravimetric water content resulting in up to 22.4 mm of additional plant available water calculated in the surface 0.45 m of soil, 2 years after compost was applied in the field at 6 t ha ⁻¹ dried (7.2 t ha ⁻¹ undried), compared with the nil control. In the pot experiment, where the soil was homogenized and compost incorporated into the soil prior to sowing, there were significant differences in mineral composition in herbage and in soil. A response in biomass yield to compost was only observed on the sandier and lower fertility soil type, and yields only exceeded that of the conventional fertilizer treatment where rates equivalent to 20 t ha ⁻¹ were applied. With few yield responses observed, the justification for applying low rates of compost to forage crops and pastures seems uncertain. Our collective experience from the field and the glasshouse suggests that farmers might increase the response to compost by: (i) increasing compost application rates; (ii) applying it prior to sowing a crop; (iii) incorporating the compost into the soil; (iv) applying only to responsive soil types; (v) growing only responsive crops; and (vi) reducing weed burdens in crops following application. Commercial machinery incorporating a centrifugal twin disc mechanism was shown to deliver double the quantity of compost in the area immediately behind the spreader compared with the edges of the spreading swathe. Spatial variability in the delivery of compost could be reduced but not eliminated by increased overlapping, but this might represent a potential 20% increase in spreading costs.
Original languageEnglish
Pages (from-to)179-193
Number of pages4
JournalRenewable Agriculture and Food Systems
Issue number2
Early online dateFeb 2017
Publication statusPublished - Apr 2018


Dive into the research topics of 'Addressing biophysical constraints for Australian farmers applying low rates of composted dairy waste to soil'. Together they form a unique fingerprint.

Cite this