Aragonite-polylysine: Neuro-regenerative scaffolds with diverse effects on astrogliosis

Tzachy Morad, Roni Mina Hendler, Eyal Canji, Orly Eva Weiss, Guy Sion, Refael Minnes, Ania Hava Grushchenko Polaq, Ido Merfeld, Zvy Dubinsky, Elimelech Nesher, Danny Baranes

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease.

    Original languageEnglish
    Article number2850
    Pages (from-to)1-16
    Number of pages16
    JournalPolymers
    Volume12
    Issue number12
    Early online date29 Nov 2020
    DOIs
    Publication statusPublished - Dec 2020

    Fingerprint

    Dive into the research topics of 'Aragonite-polylysine: Neuro-regenerative scaffolds with diverse effects on astrogliosis'. Together they form a unique fingerprint.

    Cite this