Abstract
Subsoil acidity occurs in many agricultural lands in the world, and is considered to be an irreversible constraint due to amelioration difficulties. This field study aimed to develop a biological method to ameliorate subsoil acidity through the root-induced alkalisation resulting from nitrate uptake. Aluminium (Al)-tolerant wheat variety Diamondbird and Al-sensitive variety Janz (Triticum aestivum L.) were grown at two contrasting field sites with mild and severe subsurface acidity, respectively, and were supplied with either Ca(NO3)¬2 at the soil surface, Ca(NO3)¬2 at 10 cm depth or urea at 10 cm depth. Application of nitrate increased rhizosphere pH up to 0.5 units and bulk soil pH to 0.3 units, and to a depth >30 cm in the Kandosol. The placement of nitrate at 10 cm increased subsoil pH more than the surface application. Nitrate application increased nitrate concentration in soil profiles as expected, whereas urea application increased NH4+ concentration which in turn favored acidification processes. Diamond bird generally produced more tillers and shoot biomass at anthesis but the two varieties did not differ in grain yield or rhizosphere alkalisation. Similar grain yields were achieved under supply of nitrate and urea. The results suggest that biological amelioration through managing nitrate uptake is possible as part of an integrated approach to combat subsoil acidity in farming systems.
Original language | English |
---|---|
Pages (from-to) | 383-397 |
Number of pages | 15 |
Journal | Plant and Soil |
Volume | 338 |
Issue number | 1-2 |
Early online date | 2010 |
DOIs | |
Publication status | Published - 2011 |