Botryosphaeriaceous Infections in New Zealand grapevine nurseries: Sources of inoculum and infection pathways

Research output: ThesisDoctoral Thesis

Abstract

The botryosphaeriaceous fungi can cause decline, dieback and death of grapevines. Anecdotal evidence has indicated that these pathogens might be present in the young vines sold by propagation nurseries, so this study investigated their role in spread of this disease. Sampling of grapevine nurseries across New Zealand showed that botryosphaeriaceous infections were present in eight out of nine nurseries with infection incidence ranging from 5 to 63%. Of the 311 propagation materials and plants received, 23% were positive for botryosphaeriaceous infection, with a total of 120 isolates recovered. The highest incidence was in failed grafted plants (33%), followed by Grade 1 plants (28%), rootstock cuttings (19%), scion cuttings (17%) and Grade 2 plants (7%). For grafted plants, the majority of botryosphaeriaceous species (49%) were isolated near the graft unions while infections on rootstocks and scion cuttings were mostly from the middle and basal parts. Identification of isolates by morphological and molecular methods showed that the six species commonly found in vineyards also occurred in nurseries, being Neofusicoccum luteum (57%), N. parvum (18%), N. australe (8%), Diplodia mutila (8%), Botryosphaeria dothidea (5%) and D. seriata (3%), with one novel isolate of N. macroclavatum and two unidentified botryosphaeriaceous isolates.Pathogenicity tests using one-year-old Sauvignon blanc rooted canes and green shoots showed that the seven identified botryosphaeriaceous species from the nurseries were pathogenic but pathogenicity differed significantly between species and isolates within a species, with N. parvum being the most pathogenic in both assays (P'¤0.001). Genetic variability analysis using UP-PCR showed that N. luteum isolates of different pathotypes were genetically diverse with intra- and inter-plant and nursery variability but no association between genotype and pathogenicity was observed. Susceptibility tests using three isolates each of N. luteum, N. parvum and N. australe against the most commonly used scion and rootstock varieties (six of each) found that all varieties were susceptible to the three species with 5C and SO4 being the most susceptible of the rootstock varieties, and Merlot and Pinot noir being the most susceptible of the scions.iiiInvestigations into the sources of inoculum conducted in three nurseries in 2009 using conventional and molecular methods showed that the mothervines used to provide cuttings for propagation were the most likely source of botryosphaeriaceous infections. Propagules were detected on the surfaces of cuttings and dead grapevine materials, as well as in rain-water run-off, but not in soil samples collected from the mothervine blocks. The different botryosphaeriaceous isolates recovered from canes were mostly sited within the bark suggesting presence of latent infections. Since the isolates from mothervine trunk and canes were distributed in isolated patches and the UP-PCR assessment showed that they belonged to multiple genotypes and species, this indicated that they were spread from external sources. Microscopy and plating assays were not able to detect botryosphaeriaceous contamination from any of the nursery propagation stages but molecular methods using multi-species primers detected botryosphaeriaceous DNA in samples from a wash pit, pre-cold storage hydration tanks, post-grafting hydration tanks, grafting tools and callusing medium from the different nurseries.An investigation into the probable survival of N. luteum conidia during the processing of cuttings showed that they adhered rapidly and could not be totally washed from the surfaces of cuttings after 0 h, with minimal recovery of conidia after 1, 2 and 4 h incubation at room temperature. During this time they germinated and colonised the periderm, phloem and xylem but not the pith of the cuttings. At storage temperatures of 2 and 8°C some conidia were able to germinate. At 2°C, conidial germination was 4% aft
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Lincoln University, New Zealand
Place of PublicationNew Zealand
Publisher
Publication statusPublished - 2011

Fingerprint

inoculum
scions
infection
rootstocks
canes
conidia
pathogenicity
grafting (plants)
Neofusicoccum
Botryosphaeria stevensii
Botryosphaeria dothidea
propagation materials
incidence
periderm
genotype
pathotypes
pith
dieback
assays
vineyards

Cite this

@phdthesis{a58c821aac604768b54094d25eeab8ae,
title = "Botryosphaeriaceous Infections in New Zealand grapevine nurseries: Sources of inoculum and infection pathways",
abstract = "The botryosphaeriaceous fungi can cause decline, dieback and death of grapevines. Anecdotal evidence has indicated that these pathogens might be present in the young vines sold by propagation nurseries, so this study investigated their role in spread of this disease. Sampling of grapevine nurseries across New Zealand showed that botryosphaeriaceous infections were present in eight out of nine nurseries with infection incidence ranging from 5 to 63{\%}. Of the 311 propagation materials and plants received, 23{\%} were positive for botryosphaeriaceous infection, with a total of 120 isolates recovered. The highest incidence was in failed grafted plants (33{\%}), followed by Grade 1 plants (28{\%}), rootstock cuttings (19{\%}), scion cuttings (17{\%}) and Grade 2 plants (7{\%}). For grafted plants, the majority of botryosphaeriaceous species (49{\%}) were isolated near the graft unions while infections on rootstocks and scion cuttings were mostly from the middle and basal parts. Identification of isolates by morphological and molecular methods showed that the six species commonly found in vineyards also occurred in nurseries, being Neofusicoccum luteum (57{\%}), N. parvum (18{\%}), N. australe (8{\%}), Diplodia mutila (8{\%}), Botryosphaeria dothidea (5{\%}) and D. seriata (3{\%}), with one novel isolate of N. macroclavatum and two unidentified botryosphaeriaceous isolates.Pathogenicity tests using one-year-old Sauvignon blanc rooted canes and green shoots showed that the seven identified botryosphaeriaceous species from the nurseries were pathogenic but pathogenicity differed significantly between species and isolates within a species, with N. parvum being the most pathogenic in both assays (P'¤0.001). Genetic variability analysis using UP-PCR showed that N. luteum isolates of different pathotypes were genetically diverse with intra- and inter-plant and nursery variability but no association between genotype and pathogenicity was observed. Susceptibility tests using three isolates each of N. luteum, N. parvum and N. australe against the most commonly used scion and rootstock varieties (six of each) found that all varieties were susceptible to the three species with 5C and SO4 being the most susceptible of the rootstock varieties, and Merlot and Pinot noir being the most susceptible of the scions.iiiInvestigations into the sources of inoculum conducted in three nurseries in 2009 using conventional and molecular methods showed that the mothervines used to provide cuttings for propagation were the most likely source of botryosphaeriaceous infections. Propagules were detected on the surfaces of cuttings and dead grapevine materials, as well as in rain-water run-off, but not in soil samples collected from the mothervine blocks. The different botryosphaeriaceous isolates recovered from canes were mostly sited within the bark suggesting presence of latent infections. Since the isolates from mothervine trunk and canes were distributed in isolated patches and the UP-PCR assessment showed that they belonged to multiple genotypes and species, this indicated that they were spread from external sources. Microscopy and plating assays were not able to detect botryosphaeriaceous contamination from any of the nursery propagation stages but molecular methods using multi-species primers detected botryosphaeriaceous DNA in samples from a wash pit, pre-cold storage hydration tanks, post-grafting hydration tanks, grafting tools and callusing medium from the different nurseries.An investigation into the probable survival of N. luteum conidia during the processing of cuttings showed that they adhered rapidly and could not be totally washed from the surfaces of cuttings after 0 h, with minimal recovery of conidia after 1, 2 and 4 h incubation at room temperature. During this time they germinated and colonised the periderm, phloem and xylem but not the pith of the cuttings. At storage temperatures of 2 and 8{\~A}ƒ{\^A}‚{\~A}‚°C some conidia were able to germinate. At 2{\~A}ƒ{\^A}‚{\~A}‚°C, conidial germination was 4{\%} aft",
author = "Regina Baaijens",
note = "Thesis",
year = "2011",
language = "English",
publisher = "Lincoln University",
school = "Lincoln University, New Zealand",

}

Botryosphaeriaceous Infections in New Zealand grapevine nurseries: Sources of inoculum and infection pathways. / Baaijens, Regina.

New Zealand : Lincoln University, 2011. 286 p.

Research output: ThesisDoctoral Thesis

TY - THES

T1 - Botryosphaeriaceous Infections in New Zealand grapevine nurseries: Sources of inoculum and infection pathways

AU - Baaijens, Regina

N1 - Thesis

PY - 2011

Y1 - 2011

N2 - The botryosphaeriaceous fungi can cause decline, dieback and death of grapevines. Anecdotal evidence has indicated that these pathogens might be present in the young vines sold by propagation nurseries, so this study investigated their role in spread of this disease. Sampling of grapevine nurseries across New Zealand showed that botryosphaeriaceous infections were present in eight out of nine nurseries with infection incidence ranging from 5 to 63%. Of the 311 propagation materials and plants received, 23% were positive for botryosphaeriaceous infection, with a total of 120 isolates recovered. The highest incidence was in failed grafted plants (33%), followed by Grade 1 plants (28%), rootstock cuttings (19%), scion cuttings (17%) and Grade 2 plants (7%). For grafted plants, the majority of botryosphaeriaceous species (49%) were isolated near the graft unions while infections on rootstocks and scion cuttings were mostly from the middle and basal parts. Identification of isolates by morphological and molecular methods showed that the six species commonly found in vineyards also occurred in nurseries, being Neofusicoccum luteum (57%), N. parvum (18%), N. australe (8%), Diplodia mutila (8%), Botryosphaeria dothidea (5%) and D. seriata (3%), with one novel isolate of N. macroclavatum and two unidentified botryosphaeriaceous isolates.Pathogenicity tests using one-year-old Sauvignon blanc rooted canes and green shoots showed that the seven identified botryosphaeriaceous species from the nurseries were pathogenic but pathogenicity differed significantly between species and isolates within a species, with N. parvum being the most pathogenic in both assays (P'¤0.001). Genetic variability analysis using UP-PCR showed that N. luteum isolates of different pathotypes were genetically diverse with intra- and inter-plant and nursery variability but no association between genotype and pathogenicity was observed. Susceptibility tests using three isolates each of N. luteum, N. parvum and N. australe against the most commonly used scion and rootstock varieties (six of each) found that all varieties were susceptible to the three species with 5C and SO4 being the most susceptible of the rootstock varieties, and Merlot and Pinot noir being the most susceptible of the scions.iiiInvestigations into the sources of inoculum conducted in three nurseries in 2009 using conventional and molecular methods showed that the mothervines used to provide cuttings for propagation were the most likely source of botryosphaeriaceous infections. Propagules were detected on the surfaces of cuttings and dead grapevine materials, as well as in rain-water run-off, but not in soil samples collected from the mothervine blocks. The different botryosphaeriaceous isolates recovered from canes were mostly sited within the bark suggesting presence of latent infections. Since the isolates from mothervine trunk and canes were distributed in isolated patches and the UP-PCR assessment showed that they belonged to multiple genotypes and species, this indicated that they were spread from external sources. Microscopy and plating assays were not able to detect botryosphaeriaceous contamination from any of the nursery propagation stages but molecular methods using multi-species primers detected botryosphaeriaceous DNA in samples from a wash pit, pre-cold storage hydration tanks, post-grafting hydration tanks, grafting tools and callusing medium from the different nurseries.An investigation into the probable survival of N. luteum conidia during the processing of cuttings showed that they adhered rapidly and could not be totally washed from the surfaces of cuttings after 0 h, with minimal recovery of conidia after 1, 2 and 4 h incubation at room temperature. During this time they germinated and colonised the periderm, phloem and xylem but not the pith of the cuttings. At storage temperatures of 2 and 8°C some conidia were able to germinate. At 2°C, conidial germination was 4% aft

AB - The botryosphaeriaceous fungi can cause decline, dieback and death of grapevines. Anecdotal evidence has indicated that these pathogens might be present in the young vines sold by propagation nurseries, so this study investigated their role in spread of this disease. Sampling of grapevine nurseries across New Zealand showed that botryosphaeriaceous infections were present in eight out of nine nurseries with infection incidence ranging from 5 to 63%. Of the 311 propagation materials and plants received, 23% were positive for botryosphaeriaceous infection, with a total of 120 isolates recovered. The highest incidence was in failed grafted plants (33%), followed by Grade 1 plants (28%), rootstock cuttings (19%), scion cuttings (17%) and Grade 2 plants (7%). For grafted plants, the majority of botryosphaeriaceous species (49%) were isolated near the graft unions while infections on rootstocks and scion cuttings were mostly from the middle and basal parts. Identification of isolates by morphological and molecular methods showed that the six species commonly found in vineyards also occurred in nurseries, being Neofusicoccum luteum (57%), N. parvum (18%), N. australe (8%), Diplodia mutila (8%), Botryosphaeria dothidea (5%) and D. seriata (3%), with one novel isolate of N. macroclavatum and two unidentified botryosphaeriaceous isolates.Pathogenicity tests using one-year-old Sauvignon blanc rooted canes and green shoots showed that the seven identified botryosphaeriaceous species from the nurseries were pathogenic but pathogenicity differed significantly between species and isolates within a species, with N. parvum being the most pathogenic in both assays (P'¤0.001). Genetic variability analysis using UP-PCR showed that N. luteum isolates of different pathotypes were genetically diverse with intra- and inter-plant and nursery variability but no association between genotype and pathogenicity was observed. Susceptibility tests using three isolates each of N. luteum, N. parvum and N. australe against the most commonly used scion and rootstock varieties (six of each) found that all varieties were susceptible to the three species with 5C and SO4 being the most susceptible of the rootstock varieties, and Merlot and Pinot noir being the most susceptible of the scions.iiiInvestigations into the sources of inoculum conducted in three nurseries in 2009 using conventional and molecular methods showed that the mothervines used to provide cuttings for propagation were the most likely source of botryosphaeriaceous infections. Propagules were detected on the surfaces of cuttings and dead grapevine materials, as well as in rain-water run-off, but not in soil samples collected from the mothervine blocks. The different botryosphaeriaceous isolates recovered from canes were mostly sited within the bark suggesting presence of latent infections. Since the isolates from mothervine trunk and canes were distributed in isolated patches and the UP-PCR assessment showed that they belonged to multiple genotypes and species, this indicated that they were spread from external sources. Microscopy and plating assays were not able to detect botryosphaeriaceous contamination from any of the nursery propagation stages but molecular methods using multi-species primers detected botryosphaeriaceous DNA in samples from a wash pit, pre-cold storage hydration tanks, post-grafting hydration tanks, grafting tools and callusing medium from the different nurseries.An investigation into the probable survival of N. luteum conidia during the processing of cuttings showed that they adhered rapidly and could not be totally washed from the surfaces of cuttings after 0 h, with minimal recovery of conidia after 1, 2 and 4 h incubation at room temperature. During this time they germinated and colonised the periderm, phloem and xylem but not the pith of the cuttings. At storage temperatures of 2 and 8°C some conidia were able to germinate. At 2°C, conidial germination was 4% aft

M3 - Doctoral Thesis

PB - Lincoln University

CY - New Zealand

ER -