Combining convolutional Neural network and Markov Random Field for semantic image retrieval

Haijiao Xu, Changqin Huang, Xiaodi Huang, Chunyan Xu, Muxiong Huang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
28 Downloads (Pure)


With the rapidly growing number of images over the Internet, efficient scalable semantic image retrieval becomes increasingly important. This paper presents a novel approach for semantic image retrieval by combining Convolutional Neural Network (CNN) and Markov Random Field (MRF). As a key step, image concept detection, that is, automatically recognizing multiple semantic concepts in an unlabeled image, plays an important role in semantic image retrieval. Unlike previous work that uses single-concept classifiers one by one, we detect semantic multiconcept by using a multiconcept scene classifier. In other words, our approach takes multiple concepts as a holistic scene for multiconcept scene learning. Specifically, we first train a CNN as a concept classifier, which further includes two types of classifiers: a single-concept fully connected classifier that is best suited to single-concept detection and a multiconcept scene fully connected classifier that is good for holistic scene detection. Then we propose an MRF-based late fusion approach that is able to effectively learn the semantic correlation between the single-concept classifier and multiconcept scene classifier. Finally, the semantic correlation among the subconcepts of images is cought to further improve detection precision. In order to investigate the feasibility and effectiveness of our proposed approach, we conduct comprehensive experiments on two publicly available image databases. The results show that our proposed approach outperforms several state-of-the-art approaches.
Original languageEnglish
Article number6153607
Pages (from-to)1-11
Number of pages11
JournalAdvances In Multimedia
Publication statusPublished - 01 Aug 2018


Dive into the research topics of 'Combining convolutional Neural network and Markov Random Field for semantic image retrieval'. Together they form a unique fingerprint.

Cite this