TY - JOUR
T1 - Data-driven modelling for assessing trophic status in marine ecosystems using machine learning approaches
AU - Uddin, Md Galal
AU - Nash, Stephen
AU - Rahman, Azizur
AU - Dabrowski, Tomasz
AU - Olbert, Agnieszka I
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/2/1
Y1 - 2024/2/1
N2 - Assessing eutrophication in coastal and transitional waters is of utmost importance, yet existing Trophic Status Index (TSI) models face challenges like multicollinearity, data redundancy, inappropriate aggregation methods, and complex classification schemes. To tackle these issues, we developed a novel tool that harnesses machine learning (ML) and artificial intelligence (AI), enhancing the reliability and accuracy of trophic status assessments. Our research introduces an improved data-driven methodology specifically tailored for transitional and coastal (TrC) waters, with a focus on Cork Harbour, Ireland, as a case study. Our innovative approach, named the Assessment Trophic Status Index (ATSI) model, comprises three main components: the selection of pertinent water quality indicators, the computation of ATSI scores, and the implementation of a new classification scheme. To optimize input data and minimize redundancy, we employed ML techniques, including advanced deep learning methods. Specifically, we developed a CHL prediction model utilizing ten algorithms, among which XGBoost demonstrated exceptional performance, showcasing minimal errors during both training (RMSE = 0.0, MSE = 0.0, MAE = 0.01) and testing (RMSE = 0.0, MSE = 0.0, MAE = 0.01) phases. Utilizing a novel linear rescaling interpolation function, we calculated ATSI scores and evaluated the model's sensitivity and efficiency across diverse application domains, employing metrics such as R 2, the Nash-Sutcliffe efficiency (NSE), and the model efficiency factor (MEF). The results consistently revealed heightened sensitivity and efficiency across all application domains. Additionally, we introduced a brand new classification scheme for ranking the trophic status of transitional and coastal waters. To assess spatial sensitivity, we applied the ATSI model to four distinct waterbodies in Ireland, comparing trophic assessment outcomes with the Assessment of Trophic Status of Estuaries and Bays in Ireland (ATSEBI) System. Remarkably, significant disparities between the ATSI and ATSEBI System were evident in all domains, except for Mulroy Bay. Overall, our research significantly enhances the accuracy of trophic status assessments in marine ecosystems. The ATSI model, combined with cutting-edge ML techniques and our new classification scheme, represents a promising avenue for evaluating and monitoring trophic conditions in TrC waters. The study also demonstrated the effectiveness of ATSI in assessing trophic status across various waterbodies, including lakes, rivers, and more. These findings make substantial contributions to the field of marine ecosystem management and conservation.
AB - Assessing eutrophication in coastal and transitional waters is of utmost importance, yet existing Trophic Status Index (TSI) models face challenges like multicollinearity, data redundancy, inappropriate aggregation methods, and complex classification schemes. To tackle these issues, we developed a novel tool that harnesses machine learning (ML) and artificial intelligence (AI), enhancing the reliability and accuracy of trophic status assessments. Our research introduces an improved data-driven methodology specifically tailored for transitional and coastal (TrC) waters, with a focus on Cork Harbour, Ireland, as a case study. Our innovative approach, named the Assessment Trophic Status Index (ATSI) model, comprises three main components: the selection of pertinent water quality indicators, the computation of ATSI scores, and the implementation of a new classification scheme. To optimize input data and minimize redundancy, we employed ML techniques, including advanced deep learning methods. Specifically, we developed a CHL prediction model utilizing ten algorithms, among which XGBoost demonstrated exceptional performance, showcasing minimal errors during both training (RMSE = 0.0, MSE = 0.0, MAE = 0.01) and testing (RMSE = 0.0, MSE = 0.0, MAE = 0.01) phases. Utilizing a novel linear rescaling interpolation function, we calculated ATSI scores and evaluated the model's sensitivity and efficiency across diverse application domains, employing metrics such as R 2, the Nash-Sutcliffe efficiency (NSE), and the model efficiency factor (MEF). The results consistently revealed heightened sensitivity and efficiency across all application domains. Additionally, we introduced a brand new classification scheme for ranking the trophic status of transitional and coastal waters. To assess spatial sensitivity, we applied the ATSI model to four distinct waterbodies in Ireland, comparing trophic assessment outcomes with the Assessment of Trophic Status of Estuaries and Bays in Ireland (ATSEBI) System. Remarkably, significant disparities between the ATSI and ATSEBI System were evident in all domains, except for Mulroy Bay. Overall, our research significantly enhances the accuracy of trophic status assessments in marine ecosystems. The ATSI model, combined with cutting-edge ML techniques and our new classification scheme, represents a promising avenue for evaluating and monitoring trophic conditions in TrC waters. The study also demonstrated the effectiveness of ATSI in assessing trophic status across various waterbodies, including lakes, rivers, and more. These findings make substantial contributions to the field of marine ecosystem management and conservation.
KW - ML and AI approach
KW - ATSI model
KW - Trophic status assessment
KW - Coastal and transitional waters
KW - Cork Harbour
KW - Environmental Monitoring/methods
KW - Reproducibility of Results
KW - Artificial Intelligence
KW - Ecosystem
KW - Machine Learning
UR - http://www.scopus.com/inward/record.url?scp=85178381522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178381522&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2023.117755
DO - 10.1016/j.envres.2023.117755
M3 - Article
C2 - 38008200
SN - 0013-9351
VL - 242
SP - 1
EP - 22
JO - Environmental Research
JF - Environmental Research
M1 - 117755
ER -