Abstract
Purpose: Social networks have been developed as a great point for its users to communicate with their interested friends and share their opinions, photos, and videos reflecting their moods, feelings and sentiments. This creates an opportunity to analyze social network data for user's feelings and sentiments to investigate their moods and attitudes when they are communicating via these online tools.
Methods: Although diagnosis of depression using social networks data has picked an established position globally, there are several dimensions that are yet to be detected. In this study, we aim to perform depression analysis on Facebook data collected from an online public source. To investigate the effect of depression detection, we propose machine learning technique as an efficient and scalable method.
Results: We report an implementation of the proposed method. We have evaluated the efficiency of our proposed method using a set of various psycholinguistic features. We show that our proposed method can significantly improve the accuracy and classification error rate. In addition, the result shows that in different experiments Decision Tree (DT) gives the highest accuracy than other ML approaches to find the depression.
Conclusions: Machine learning techniques identify high quality solutions of mental health problems among Facebook users.
Methods: Although diagnosis of depression using social networks data has picked an established position globally, there are several dimensions that are yet to be detected. In this study, we aim to perform depression analysis on Facebook data collected from an online public source. To investigate the effect of depression detection, we propose machine learning technique as an efficient and scalable method.
Results: We report an implementation of the proposed method. We have evaluated the efficiency of our proposed method using a set of various psycholinguistic features. We show that our proposed method can significantly improve the accuracy and classification error rate. In addition, the result shows that in different experiments Decision Tree (DT) gives the highest accuracy than other ML approaches to find the depression.
Conclusions: Machine learning techniques identify high quality solutions of mental health problems among Facebook users.
Original language | English |
---|---|
Article number | 8 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Health Information Science and Systems |
Volume | 6 |
Issue number | 1 |
Early online date | 27 Aug 2018 |
DOIs | |
Publication status | Published - Dec 2018 |
Fingerprint
Dive into the research topics of 'Depression detection from social network data using machine learning techniques'. Together they form a unique fingerprint.Impacts
-
Transforming AI-Driven Depression Detection Research into National Mental Health Policy Guidance
Kabir, A. (Creator)
Impact: Public policy Impact
File