TY - JOUR
T1 - Designing resistance exercise programs to enhance muscular fitness
T2 - A review of the acute programs variables.
AU - Bird, Stephen
AU - Tarpenning, Kyle
AU - Marino, Francesco
N1 - Imported on 12 Apr 2017 - DigiTool details were: Journal title (773t) = Sports Medicine. ISSNs: 0112-1642;
PY - 2005
Y1 - 2005
N2 - The popularity of resistance training has grown immensely over the past 25 years, with extensive research demonstrating that not only is resistance training an effective method to improve neuromuscular function, it can also be equally effective in maintaining or improving individual health status. However, designing a resistance training programme is a complex process that incorporates several acute programme variables and key training principles. The effectiveness of a resistance training programme to achieve a specific training outcome (i.e. muscular endurance, hypertrophy, maximal strength, or power) depends on manipulation of the acute programme variables, these include: (i) muscle action; (ii) loading and volume; (iii) exercise selection and order; (iv) rest periods; (v) repetition velocity; and (vi) frequency. Ultimately, it is the acute programme variables, all of which affect the degree of the resistance training stimuli, that determine the magnitude to which the neuromuscular, neuroendocrine and musculoskeletal systems adapt to both acute and chronic resistance exercise. This article reviews the available research that has examined the application of the acute programme variables and their influence on exercise performance and training adaptations. The concepts presented in this article represent an important approach to effective programme design. Therefore, it is essential for those involved with the prescription of resistance exercise (i.e. strength coaches, rehabilitation specialists, exercise physiologists) to acquire a fundamental understanding of the acute programme variables and the importance of their practical application in programme design.
AB - The popularity of resistance training has grown immensely over the past 25 years, with extensive research demonstrating that not only is resistance training an effective method to improve neuromuscular function, it can also be equally effective in maintaining or improving individual health status. However, designing a resistance training programme is a complex process that incorporates several acute programme variables and key training principles. The effectiveness of a resistance training programme to achieve a specific training outcome (i.e. muscular endurance, hypertrophy, maximal strength, or power) depends on manipulation of the acute programme variables, these include: (i) muscle action; (ii) loading and volume; (iii) exercise selection and order; (iv) rest periods; (v) repetition velocity; and (vi) frequency. Ultimately, it is the acute programme variables, all of which affect the degree of the resistance training stimuli, that determine the magnitude to which the neuromuscular, neuroendocrine and musculoskeletal systems adapt to both acute and chronic resistance exercise. This article reviews the available research that has examined the application of the acute programme variables and their influence on exercise performance and training adaptations. The concepts presented in this article represent an important approach to effective programme design. Therefore, it is essential for those involved with the prescription of resistance exercise (i.e. strength coaches, rehabilitation specialists, exercise physiologists) to acquire a fundamental understanding of the acute programme variables and the importance of their practical application in programme design.
KW - Open access version available
M3 - Article
SN - 0112-1642
VL - 35
SP - 841
EP - 851
JO - Sports Medicine
JF - Sports Medicine
IS - 10
ER -