TY - JOUR
T1 - Designing touch-based hybrid authentication method for smartphones
AU - Nader, J.
AU - Alsadoon, A.
AU - Prasad, P. W. C.
AU - Singh, A. K.
AU - Elchouemi, A.
PY - 2015
Y1 - 2015
N2 - With the privilege of using mobile devices it is crucial to protect Smartphones by authenticating legitimate users, while blocking attacker's access. Biometric authentication consists of physiological and behavioural authentication. Behavioural authentication system on smartphones is based on creating a regular behavioural model using adaptive machine learning classifiers. This paper aims to establish a normal-behavioural model and comparing it with the existing established model. This paper also proposes a hybrid authentication scheme comprises of continuous authentication (CA) and implicit authentication (IA) based on touch gestures. Particularly, the 14 gestures were extracted from touch-based gesture data that was collected from users' interaction with Android smartphones. The first evaluation results on a set of dataset prove that a neural network classifier is better fit to authenticate different users. Next, the Practical Swarm Optimisation (PSO) - Radial Basis Function Network (RBFN) classifier was used on the same datasets, which produced better results. Finally, users' data collected (actual dataset) was used to train and test all 6 classifiers including PSO-RBFN. The result of PSO-RBFN is the average error rate of 1.9%, which is encouraging. Moreover, combining the proposed CA scheme with an IA scheme, which is a pattern based will dramatically reduce the error rate to nearly 0.
AB - With the privilege of using mobile devices it is crucial to protect Smartphones by authenticating legitimate users, while blocking attacker's access. Biometric authentication consists of physiological and behavioural authentication. Behavioural authentication system on smartphones is based on creating a regular behavioural model using adaptive machine learning classifiers. This paper aims to establish a normal-behavioural model and comparing it with the existing established model. This paper also proposes a hybrid authentication scheme comprises of continuous authentication (CA) and implicit authentication (IA) based on touch gestures. Particularly, the 14 gestures were extracted from touch-based gesture data that was collected from users' interaction with Android smartphones. The first evaluation results on a set of dataset prove that a neural network classifier is better fit to authenticate different users. Next, the Practical Swarm Optimisation (PSO) - Radial Basis Function Network (RBFN) classifier was used on the same datasets, which produced better results. Finally, users' data collected (actual dataset) was used to train and test all 6 classifiers including PSO-RBFN. The result of PSO-RBFN is the average error rate of 1.9%, which is encouraging. Moreover, combining the proposed CA scheme with an IA scheme, which is a pattern based will dramatically reduce the error rate to nearly 0.
KW - Behaviour Biometric
KW - Continuous Authentication
KW - Implicit Authentication
KW - Mobile Devices Security
KW - Smartphones
KW - Touch Gesture
UR - http://www.scopus.com/inward/record.url?scp=84962776303&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962776303&partnerID=8YFLogxK
U2 - 10.1016/j.procs.2015.10.072
DO - 10.1016/j.procs.2015.10.072
M3 - Article
AN - SCOPUS:84962776303
SN - 1877-0509
VL - 70
SP - 198
EP - 204
JO - Procedia Computer Science
JF - Procedia Computer Science
T2 - 4th International Conference on Eco-friendly Computing and Communication Systems, ICECCS 2015
Y2 - 7 December 2015 through 8 December 2015
ER -