Differential tolerance of high manganese among rapeseed genotypes

Juan Moroni, Brendan Scott, Neil Wratten

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Cultivation of crop cultivars resistant to high soil manganese (Mn) may reduce the negative effects of Mn toxicity on crop yield. Three studies were carried out to select Brassica genotypes (B. napus and B. rapa) resistant to high Mn concentration and to characterise the nature of any Mn resistance found. In Experiment 1, 33 B. napus and nine B. rapa genotypes were screened in a sub-irrigated nutrient solution system. Based on visual symptoms and plant size, single plants were identified with resistance to high Mn from within cultivars of four B. napus and one B. rapa. Resistance was also identified in one B. napus doubled haploid genotype. In Experiment 2, a genotype resistant to high Mn and two genotypes (progenies from Experiment 1) sensitive to high Mn were exposed to eight Mn concentrations (9'500 M) for 2 weeks in nutrient solution. The relative shoot weight (RSW) and the relative root weight (RRW) of the genotype resistant to Mn were significantly greater at 100 M Mn than both genotypes sensitive to high Mn; the sensitive genotypes reacted similarly. The three genotypes had similar tissue Mn contents and the elevated Mn tissue contents did not induce deficiencies of Mg or Fe. In Experiment 3, 12 genotypes (progenies from Experiment 1) were screened in nutrient solution at 9 M Mn and with an additional 125 M Mn. The RRW and RSW of the genotypes ranged from 35 to 114 and 39 to 94%, respectively. All the selections sensitive to high Mn had a RSW <60% and thus were confirmed to be Mn sensitive, while all the selections resistant to Mn had a RSW >70% and thus were confirmed as Mn resistant. This evidence confirmed the availability of rapeseed germplasm resistant to Mn toxicity with an ability to withstand high content of Mn through internal tissue tolerance. Also, the observed Mn tolerance in this material is genetically controlled and not an artifact of our screening assays.
Original languageEnglish
Pages (from-to)507-519
Number of pages13
JournalPlant and Soil
Volume253
Issue number2
DOIs
Publication statusPublished - 2003

Fingerprint Dive into the research topics of 'Differential tolerance of high manganese among rapeseed genotypes'. Together they form a unique fingerprint.

  • Cite this