Dual benefits of long-term ecological agricultural engineering: Mitigation of nutrient losses and improvement of soil quality

Hongying Li, Ningyuan Zhu, Sichu Wang, Mengning Gao, Lizhong Xia, Philip G. Kerr, Yonghong Wu

Research output: Contribution to journalArticle

Abstract

Soil erosion of sloped farmland in the Three Gorges Reservoir area (TGRA) has led to the serious loss of nutrients, soil quality degradation and the downstream water quality being threatened. Thus, a series of ecological agricultural engineering measures was established in 2011, as a field experiment using citrus (navel orange) plants to reduce soil erosion, which was monitored from 2011 to 2018. These ecological agricultural engineering measures included three treatments: 1) citrus intercropped with white clover (WC), 2) citrus orchard land mulched with straw (SM) and 3) citrus intercropped with hemerocallis (Hemerocallis flava) contour hedgerows (CH). The conventional citrus orchard management was regarded as control (CK). The results show, that compared with CK, nutrient loss from the experiments were reduced by the following amounts: for nitrogen - WC (35.5%), SM (44.0%) and CH (52.0%); for phosphorus - WC (40.0%), SM (51.7%) and CH (58.3%). Therefore, the ecological agricultural engineering measures effectively mitigate the nutrient loss loads of the navel orange citrus gardens. The citrus intercropped with the hemerocallis hedgerows is the most effective measure for the control of nutrient loss. After 8 years of experiment, the soil quality represented by average soil quality index (SQI) in these three treatments, are significantly higher than that of the CK (and the beginning of the experiment). This is because the application of these measures prevented the loss of: soil organic matter, bulk density and total phosphorus. It is predicted that the soil qualities of these three treatments will remain in the range of soil grade II and I for the next 5 years but the soil quality of CK will decrease to soil quality grade II and III. These results show that ecological agricultural engineering measures are a long-term promising and feasible method to reduce soil erosion and enhance soil quality.

Original languageEnglish
Article number137848
Pages (from-to)1-11
Number of pages11
JournalScience of the Total Environment
Volume721
DOIs
Publication statusPublished - 15 Jun 2020

Fingerprint Dive into the research topics of 'Dual benefits of long-term ecological agricultural engineering: Mitigation of nutrient losses and improvement of soil quality'. Together they form a unique fingerprint.

  • Cite this