TY - JOUR
T1 - Duration-dependant response of Mixed-method pre-cooling for intermittent-sprint exercise in the heat
AU - Minett, Geoffrey
AU - Duffield, Rob
AU - Marino, Francesco
AU - Portus, M.
N1 - Imported on 12 Apr 2017 - DigiTool details were: month (773h) = October, 2012; Journal title (773t) = European Journal of Applied Physiology. ISSNs: 1439-6319;
PY - 2012/10
Y1 - 2012/10
N2 - This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and postintervention and mid- and post-exercise. Core temperature (Tc), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P<0.05), with no differences observed between COOL10 and CONT (P>0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P<0.05; d>0.80), despite no conditional differences in VA (P>0.05). Pre-exercise Tc was reduced by 0.15 ± 0.13°C with COOL20 (P<0.05; d>1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P<0.05; d>0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P<0.02; d>1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
AB - This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and postintervention and mid- and post-exercise. Core temperature (Tc), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P<0.05), with no differences observed between COOL10 and CONT (P>0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P<0.05; d>0.80), despite no conditional differences in VA (P>0.05). Pre-exercise Tc was reduced by 0.15 ± 0.13°C with COOL20 (P<0.05; d>1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P<0.05; d>0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P<0.02; d>1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
U2 - 10.1007/s00421-012-2348-2
DO - 10.1007/s00421-012-2348-2
M3 - Article
SN - 1439-6319
VL - 112
SP - 3655
EP - 3666
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 10
ER -