TY - JOUR
T1 - Effect of elastic gradients on the fracture resistance of tri-layer restorative systems
AU - Madeira, Luciano
AU - Weber, Katia R.
AU - Carpenedo, Natan
AU - Zhang, Yu
AU - Porto, Thiago S.
AU - Meira, Josete Barbosa Cruz
AU - Gonzaga, Carla C.
AU - Kaizer, Marina R.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/11
Y1 - 2024/11
N2 - Objectives: To assess the impact of elastic gradients formed among restorative material, cement, and substrate on the fracture resistance of tri-layer restorative systems. Methods: Four CAD/CAM materials were utilized, two glass-ceramics (IPS e.max CAD, Vita Suprinity) and two resin-ceramic hybrids (Vita Enamic, Lava Ultimate). Their fracture resistance was examined by biaxial flexure (n = 8) and Hertzian indentation (n = 10) tests. Statistical analysis was conducted using ANOVA and Tukey tests (p = 5 %). Finite element analysis (FEA) was employed to simulate the Hertzian indentation test and elucidate the stress-fields formed on the intaglio surface below the loading area. Results: The biaxial flexural strength (MPa) of glass-ceramics exceeded the hybrid materials (e.max 417a, Suprinity 230b, Enamic 138c, and Lava Ultimate 183bc). Conversely, the load-bearing capacity (N) of the materials bonded to dentin analog demonstrated the opposite trend, with the hybrid materials achieving superior results (e.max 830 C, Suprinity 660D, Enamic 1822B, and Lava Ultimate 2593 A). The stress-fields observed by FEA were coherent with the experimental results for Hertzian flexural stresses (MPa): e.max 501 A, Suprinity 342 C, Enamic 406B, whereas no tensile stress was observed at the intaglio surface of Lava Ultimate. Significance: Detailed analysis of the fracture resistance of the tri-layer restorative systems showed that the elastic gradients play a more significant role than the flexural strength of the restorative materials. The coherence of the elastic moduli between the restorative material and supporting structures results in reduced tensile stress concentration at the intaglio surface beneath the loading area and enhances the ability to withstand load.
AB - Objectives: To assess the impact of elastic gradients formed among restorative material, cement, and substrate on the fracture resistance of tri-layer restorative systems. Methods: Four CAD/CAM materials were utilized, two glass-ceramics (IPS e.max CAD, Vita Suprinity) and two resin-ceramic hybrids (Vita Enamic, Lava Ultimate). Their fracture resistance was examined by biaxial flexure (n = 8) and Hertzian indentation (n = 10) tests. Statistical analysis was conducted using ANOVA and Tukey tests (p = 5 %). Finite element analysis (FEA) was employed to simulate the Hertzian indentation test and elucidate the stress-fields formed on the intaglio surface below the loading area. Results: The biaxial flexural strength (MPa) of glass-ceramics exceeded the hybrid materials (e.max 417a, Suprinity 230b, Enamic 138c, and Lava Ultimate 183bc). Conversely, the load-bearing capacity (N) of the materials bonded to dentin analog demonstrated the opposite trend, with the hybrid materials achieving superior results (e.max 830 C, Suprinity 660D, Enamic 1822B, and Lava Ultimate 2593 A). The stress-fields observed by FEA were coherent with the experimental results for Hertzian flexural stresses (MPa): e.max 501 A, Suprinity 342 C, Enamic 406B, whereas no tensile stress was observed at the intaglio surface of Lava Ultimate. Significance: Detailed analysis of the fracture resistance of the tri-layer restorative systems showed that the elastic gradients play a more significant role than the flexural strength of the restorative materials. The coherence of the elastic moduli between the restorative material and supporting structures results in reduced tensile stress concentration at the intaglio surface beneath the loading area and enhances the ability to withstand load.
KW - CAD-CAM
KW - Ceramics
KW - Composite resins
KW - Elastic modulus
KW - Flexural strength
KW - Mechanical stress
UR - http://www.scopus.com/inward/record.url?scp=85202168549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85202168549&partnerID=8YFLogxK
U2 - 10.1016/j.dental.2024.08.004
DO - 10.1016/j.dental.2024.08.004
M3 - Article
C2 - 39209606
AN - SCOPUS:85202168549
SN - 0109-5641
VL - 40
SP - 1862
EP - 1871
JO - Dental Materials
JF - Dental Materials
IS - 11
ER -