Effect of Heat Acclimation on Heat Shock Protein 72 and Interleukin-10 in Humans

Paulette, M. Yamada, Fabiano T. Amorim, Pope Moseley, Robert Robergs, Suzanne M. Schneider

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


Heat acclimation (HA) results in whole body adaptations that increase heat tolerance, and in addition, HA may also result in protective cellular adaptations. We hypothesized that, after HA, basal intracellular heat shock protein (HSP) 72 and extracellular IL-10 levels would increase, while extracellular HSP72 levels decrease. Ten male and two female subjects completed a 10-day exercise/HA protocol (100-min exercise bout at 56% of maximum O<sub>2</sub> uptake in a 42.5°C DB, 27.9% RH environment); subjects exhibited classic adaptations that accompany HA. Peripheral blood mononuclear cells (PBMCs) were isolated before and after each acclimation session on days 1, 6, and 10; plasma and serum were collected before and after exercise on the 1st and 10th day of HA. SDS-PAGE was used to determine PBMC HSP72 levels during HA, and ELISA was used to measure plasma IL-10 and serum HSP72 concentrations. The increase in PBMC HSP72 from pre- to postexercise on the 1st day of HA was not significant (mean ± SD, 1.0 ± 0 vs. 1.6 ± 0.6 density units). Preexercise HSP72 levels on day 1 were significantly lower compared with the pre- and postexercise samples on days 6 and 10 (mean ± SD, day 6: 2.1 ± 1.0 and 2.2 ± 1.0, day 10: 2.0 ± 1.3 and 2.2 ± 1.0 density units, respectively, P < 0.05). There were no differences in plasma IL-10 and serum HSP72 postexercise or after 10 days of HA. The sustained elevation of HSP72 from days 6 to 10 may be evidence of a cellular adaptation to HA that contributes to improved heat tolerance and reduced heat illness risk.
Original languageEnglish
Pages (from-to)1196-1204
Number of pages9
JournalJournal of Applied Physiology
Issue number4
Publication statusPublished - 2007

Fingerprint Dive into the research topics of 'Effect of Heat Acclimation on Heat Shock Protein 72 and Interleukin-10 in Humans'. Together they form a unique fingerprint.

Cite this