Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke

David Jackson, J Peeling, M Del Bigio, D Corbett, AR Green

Research output: Contribution to journalArticlepeer-review

109 Citations (Scopus)

Abstract

Because free radical mechanisms may contribute to brain injury in hemorrhagic stroke, the effect of the free radical trapping agent disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059) was investigated on outcome following intracerebral hemorrhage (ICH) in rat. ICH was induced in 20 adult rats by infusion of collagenase into the caudate-putamen. Thirty minutes later rats were treated with NXY-059 (50 mg/kg subcutaneous plus 8.8 mg/kg/h for 3 days subcutaneous delivered via implanted osmotic pumps) or saline (equivalent volumes). Magnetic resonance imaging 24 h after ICH confirmed that the hemorrhage was uniform in the two groups, and subsequent imaging at 7 and 42 days post-ICH showed that the hematoma resolved similarly in the two groups. Behavioral testing on days 1, 3, 7, 14, and 21 after ICH showed that rats treated with NXY-059 had significantly decreased neurological impairment at all times. Deficits in skilled forelimb use 4'5 weeks post-ICH, and in striatal function 6 weeks post-ICH, were not reduced by treatment with NXY-059. Treatment with NXY-059 significantly reduced the neutrophil infiltrate observed 48 h post-hemorrhage in the vicinity of the hematoma, and the number of TUNEL-positive cells 48 h post-hemorrhage at the hematoma margin. However, by 6 weeks there were no differences in neuronal densities in treated and control rats.
Original languageEnglish
Pages (from-to)433-439
Number of pages7
JournalNeuropharmacology
Volume40
Issue number3
DOIs
Publication statusPublished - 2000

Fingerprint

Dive into the research topics of 'Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke'. Together they form a unique fingerprint.

Cite this