Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia

T. Elliott, Angela Muller, Yvette Brockwell, N. Murphy, Victoria Grillo, H. Toet, Glenn Anderson, Nicholas Sangster, Terry Spithill

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

In recent years, the global incidence of Fasciola hepatica (liver fluke) infections exhibiting resistance to triclabendazole (TCBZ) has increased, resulting in increased economic losses for livestock producers and threatening future control. The development of TCBZ resistance and the worldwide discovery of F. hepatica population diversity has emphasized the need to further understand the genetic structure of drug susceptible and resistant Fasciola populations within Australia. In this study, the genetic diversity of liver flukes was estimated by sequencing mitochondrial DNA (mtDNA) encoding the NAD1 (530 bp) and COX1 (420 bp) genes of 208 liver flukes (F. hepatica) collected from three populations: field isolates obtained from abattoirs from New South Wales (NSW) and Victoria (Vic); three TCBZ-resistant fluke populations from NSW and Victoria; and the well-established TCBZ-susceptible Sunny Corner laboratory isolate. Overall nucleotide diversity for all flukes analysed of 0.00516 and 0.00336 was estimated for the NAD1 and COX1 genes respectively. Eighteen distinct haplotypes were established for the NAD1 gene and six haplotypes for the COX1 gene, resulting in haplotype diversity levels of 0.832 and 0.482, respectively. One field isolate showed a similar low level of haplotype diversity as seen in the Sunny Corner laboratory isolate. Analysis of TCBZ-resistant infrapopulations from 3 individual cattle grazing one property revealed considerable sequence parasite diversity between cattle. Analysis of parasite TCBZ-resistant infrapopulations from sheep and cattle revealed haplotypes unique to each host, but no significant difference between parasite populations. Fst analysis of fluke populations revealed little differentiation between the resistant and field populations. This study has revealed a high level of diversity in field and drug resistant flukes in South-Eastern Australia.
Original languageEnglish
Pages (from-to)90-96
Number of pages7
JournalVeterinary Parasitology
Volume200
Issue number1-2
DOIs
Publication statusPublished - Feb 2014

Fingerprint

triclabendazole
liver flukes
Fasciola hepatica
at-risk population
Haplotypes
haplotypes
Trematoda
flukes
genetic variation
Population
Victoria (Australia)
Parasites
New South Wales
Victoria
parasites
Genes
cattle
genes
Fasciola
trematode infections

Cite this

@article{650843d8881e448982283b4324fc6523,
title = "Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia",
abstract = "In recent years, the global incidence of Fasciola hepatica (liver fluke) infections exhibiting resistance to triclabendazole (TCBZ) has increased, resulting in increased economic losses for livestock producers and threatening future control. The development of TCBZ resistance and the worldwide discovery of F. hepatica population diversity has emphasized the need to further understand the genetic structure of drug susceptible and resistant Fasciola populations within Australia. In this study, the genetic diversity of liver flukes was estimated by sequencing mitochondrial DNA (mtDNA) encoding the NAD1 (530 bp) and COX1 (420 bp) genes of 208 liver flukes (F. hepatica) collected from three populations: field isolates obtained from abattoirs from New South Wales (NSW) and Victoria (Vic); three TCBZ-resistant fluke populations from NSW and Victoria; and the well-established TCBZ-susceptible Sunny Corner laboratory isolate. Overall nucleotide diversity for all flukes analysed of 0.00516 and 0.00336 was estimated for the NAD1 and COX1 genes respectively. Eighteen distinct haplotypes were established for the NAD1 gene and six haplotypes for the COX1 gene, resulting in haplotype diversity levels of 0.832 and 0.482, respectively. One field isolate showed a similar low level of haplotype diversity as seen in the Sunny Corner laboratory isolate. Analysis of TCBZ-resistant infrapopulations from 3 individual cattle grazing one property revealed considerable sequence parasite diversity between cattle. Analysis of parasite TCBZ-resistant infrapopulations from sheep and cattle revealed haplotypes unique to each host, but no significant difference between parasite populations. Fst analysis of fluke populations revealed little differentiation between the resistant and field populations. This study has revealed a high level of diversity in field and drug resistant flukes in South-Eastern Australia.",
keywords = "COX1, Fasciola hepatica, Mitochondrial DNA, NAD1, Population genetics, Triclabendazole resistance",
author = "T. Elliott and Angela Muller and Yvette Brockwell and N. Murphy and Victoria Grillo and H. Toet and Glenn Anderson and Nicholas Sangster and Terry Spithill",
note = "Includes bibliographical references.",
year = "2014",
month = "2",
doi = "10.1016/j.vetpar.2013.11.019",
language = "English",
volume = "200",
pages = "90--96",
journal = "Veterinary Parasitology",
issn = "0304-4017",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia

AU - Elliott, T.

AU - Muller, Angela

AU - Brockwell, Yvette

AU - Murphy, N.

AU - Grillo, Victoria

AU - Toet, H.

AU - Anderson, Glenn

AU - Sangster, Nicholas

AU - Spithill, Terry

N1 - Includes bibliographical references.

PY - 2014/2

Y1 - 2014/2

N2 - In recent years, the global incidence of Fasciola hepatica (liver fluke) infections exhibiting resistance to triclabendazole (TCBZ) has increased, resulting in increased economic losses for livestock producers and threatening future control. The development of TCBZ resistance and the worldwide discovery of F. hepatica population diversity has emphasized the need to further understand the genetic structure of drug susceptible and resistant Fasciola populations within Australia. In this study, the genetic diversity of liver flukes was estimated by sequencing mitochondrial DNA (mtDNA) encoding the NAD1 (530 bp) and COX1 (420 bp) genes of 208 liver flukes (F. hepatica) collected from three populations: field isolates obtained from abattoirs from New South Wales (NSW) and Victoria (Vic); three TCBZ-resistant fluke populations from NSW and Victoria; and the well-established TCBZ-susceptible Sunny Corner laboratory isolate. Overall nucleotide diversity for all flukes analysed of 0.00516 and 0.00336 was estimated for the NAD1 and COX1 genes respectively. Eighteen distinct haplotypes were established for the NAD1 gene and six haplotypes for the COX1 gene, resulting in haplotype diversity levels of 0.832 and 0.482, respectively. One field isolate showed a similar low level of haplotype diversity as seen in the Sunny Corner laboratory isolate. Analysis of TCBZ-resistant infrapopulations from 3 individual cattle grazing one property revealed considerable sequence parasite diversity between cattle. Analysis of parasite TCBZ-resistant infrapopulations from sheep and cattle revealed haplotypes unique to each host, but no significant difference between parasite populations. Fst analysis of fluke populations revealed little differentiation between the resistant and field populations. This study has revealed a high level of diversity in field and drug resistant flukes in South-Eastern Australia.

AB - In recent years, the global incidence of Fasciola hepatica (liver fluke) infections exhibiting resistance to triclabendazole (TCBZ) has increased, resulting in increased economic losses for livestock producers and threatening future control. The development of TCBZ resistance and the worldwide discovery of F. hepatica population diversity has emphasized the need to further understand the genetic structure of drug susceptible and resistant Fasciola populations within Australia. In this study, the genetic diversity of liver flukes was estimated by sequencing mitochondrial DNA (mtDNA) encoding the NAD1 (530 bp) and COX1 (420 bp) genes of 208 liver flukes (F. hepatica) collected from three populations: field isolates obtained from abattoirs from New South Wales (NSW) and Victoria (Vic); three TCBZ-resistant fluke populations from NSW and Victoria; and the well-established TCBZ-susceptible Sunny Corner laboratory isolate. Overall nucleotide diversity for all flukes analysed of 0.00516 and 0.00336 was estimated for the NAD1 and COX1 genes respectively. Eighteen distinct haplotypes were established for the NAD1 gene and six haplotypes for the COX1 gene, resulting in haplotype diversity levels of 0.832 and 0.482, respectively. One field isolate showed a similar low level of haplotype diversity as seen in the Sunny Corner laboratory isolate. Analysis of TCBZ-resistant infrapopulations from 3 individual cattle grazing one property revealed considerable sequence parasite diversity between cattle. Analysis of parasite TCBZ-resistant infrapopulations from sheep and cattle revealed haplotypes unique to each host, but no significant difference between parasite populations. Fst analysis of fluke populations revealed little differentiation between the resistant and field populations. This study has revealed a high level of diversity in field and drug resistant flukes in South-Eastern Australia.

KW - COX1

KW - Fasciola hepatica

KW - Mitochondrial DNA

KW - NAD1

KW - Population genetics

KW - Triclabendazole resistance

U2 - 10.1016/j.vetpar.2013.11.019

DO - 10.1016/j.vetpar.2013.11.019

M3 - Article

C2 - 24360656

VL - 200

SP - 90

EP - 96

JO - Veterinary Parasitology

JF - Veterinary Parasitology

SN - 0304-4017

IS - 1-2

ER -