Abstract
Objective: This study evaluated the effect of dwell time (conventional or extended) and cooling protocol (fast or slow) of self-glaze firings on the mechanical (flexural strength and crack propagation) and optical (color and translucency) properties of a porcelain-veneered zirconia system.
Methods: Bilayer disc-shaped samples were prepared (Vita VM9 + In-Ceram YZ) and divided according to the final thermal treatment: glaze firing followed by slow cooling (furnace opening at 200 °C) (G-S) or fast cooling (furnace opening at 600 °C) (G-F, manufacturer-recommended protocol), extended glaze firing (15 min of dwell time) followed by slow cooling (EG-S) or fast cooling (EG-F), or no thermal treatment (CTRL). Porcelain roughness (Ra and Rz) was measured before and after glaze firings. Color (ΔE00) and translucency (TP00) alteration were also evaluated. Flexural strength was measured with the piston-on-three-ball test and crack propagation analysis was performed after Vickers indentations. Complementary analyzes of crystalline phase and scanning electron microscopy were carried out.
Results: Significant effect of dwell time was observed, with extended glaze leading to higher flexural strength and shorter crack lengths. Cracks of EG groups were observed to end in clusters of crystals. Color and translucency changed below perceptibility thresholds. All treatments led to a smoother surface and EG groups reached the lowest Rz values. An extra SiO2 peak was revealed in control and EG groups. No effect of cooling protocol was found.
Significance: Extended glaze firing was able to improve the resistance to crack initiation and propagation of porcelain-veneered zirconia without clinically perceptible changes in optical properties.
Methods: Bilayer disc-shaped samples were prepared (Vita VM9 + In-Ceram YZ) and divided according to the final thermal treatment: glaze firing followed by slow cooling (furnace opening at 200 °C) (G-S) or fast cooling (furnace opening at 600 °C) (G-F, manufacturer-recommended protocol), extended glaze firing (15 min of dwell time) followed by slow cooling (EG-S) or fast cooling (EG-F), or no thermal treatment (CTRL). Porcelain roughness (Ra and Rz) was measured before and after glaze firings. Color (ΔE00) and translucency (TP00) alteration were also evaluated. Flexural strength was measured with the piston-on-three-ball test and crack propagation analysis was performed after Vickers indentations. Complementary analyzes of crystalline phase and scanning electron microscopy were carried out.
Results: Significant effect of dwell time was observed, with extended glaze leading to higher flexural strength and shorter crack lengths. Cracks of EG groups were observed to end in clusters of crystals. Color and translucency changed below perceptibility thresholds. All treatments led to a smoother surface and EG groups reached the lowest Rz values. An extra SiO2 peak was revealed in control and EG groups. No effect of cooling protocol was found.
Significance: Extended glaze firing was able to improve the resistance to crack initiation and propagation of porcelain-veneered zirconia without clinically perceptible changes in optical properties.
Original language | English |
---|---|
Pages (from-to) | 1096-1106 |
Number of pages | 11 |
Journal | Dental Materials |
Volume | 37 |
Issue number | 7 |
Early online date | 15 Apr 2021 |
DOIs | |
Publication status | Published - Jul 2021 |