TY - JOUR
T1 - Fast Talairach Transformation for magnetic resonance neuroimages.
AU - Nowinski, Wieslaw L
AU - Qian, Guoyu
AU - Bhanu Prakash, K N
AU - Hu, Qingmao
AU - Aziz, Aamer
N1 - Imported on 12 Apr 2017 - DigiTool details were: Journal title (773t) = Journal of Computer Assisted Tomography: a radiological journal dedicated to the basic and clinical aspects of reconstructive tomography. ISSNs: 0363-8715;
PY - 2006
Y1 - 2006
N2 - We introduce and validate the Fast Talairach Transformation (FTT). FTT is a rapid version of the Talairach transformation (TT) with the modified Talairach landmarks. Landmark identification is fully automatic and done in 3 steps: calculation of midsagittal plane, computing of anterior commissure (AC) and posterior commissure (PC) landmarks, and calculation of cortical landmarks. To perform these steps, we use fast and anatomy-based algorithms employing simple operations. FTT was validated for 215 diversified T1-weighted and spoiled gradient recalled (SPGR) MRI data sets. It calculates the landmarks and warps the Talairach-Tournoux atlas fully automatically in about 5 sec on a standard computer. The average distance errors in landmark localization are (in mm): 1.16 (AC), 1.49 (PC), 0.08 (left), 0.13 (right), 0.48 (anterior), 0.16 (posterior), 0.35 (superior), and 0.52 (inferior). Extensions to FTT by introducing additional landmarks and applying nonlinear warping against the ventricular system are addressed. Application of FTT to other brain atlases of anatomy, function, tracts, cerebrovasculature, and blood supply territories is discussed. FTT may be useful in a clinical setting and research environment: (1) when the TT is used traditionally, (2) when a global brain structure positioning with quick searching and labeling is required, (3) in urgent cases for quick image interpretation (eg, acute stroke), (4) when the difference between nonlinear and piecewise linear warping is negligible, (5) when automatic processing of a large number of cases is required, (6) as an initial atlas-scan alignment before performing nonlinear warping, and (7) as an initial atlas-guided segmentation of brain structures before further local processing.
AB - We introduce and validate the Fast Talairach Transformation (FTT). FTT is a rapid version of the Talairach transformation (TT) with the modified Talairach landmarks. Landmark identification is fully automatic and done in 3 steps: calculation of midsagittal plane, computing of anterior commissure (AC) and posterior commissure (PC) landmarks, and calculation of cortical landmarks. To perform these steps, we use fast and anatomy-based algorithms employing simple operations. FTT was validated for 215 diversified T1-weighted and spoiled gradient recalled (SPGR) MRI data sets. It calculates the landmarks and warps the Talairach-Tournoux atlas fully automatically in about 5 sec on a standard computer. The average distance errors in landmark localization are (in mm): 1.16 (AC), 1.49 (PC), 0.08 (left), 0.13 (right), 0.48 (anterior), 0.16 (posterior), 0.35 (superior), and 0.52 (inferior). Extensions to FTT by introducing additional landmarks and applying nonlinear warping against the ventricular system are addressed. Application of FTT to other brain atlases of anatomy, function, tracts, cerebrovasculature, and blood supply territories is discussed. FTT may be useful in a clinical setting and research environment: (1) when the TT is used traditionally, (2) when a global brain structure positioning with quick searching and labeling is required, (3) in urgent cases for quick image interpretation (eg, acute stroke), (4) when the difference between nonlinear and piecewise linear warping is negligible, (5) when automatic processing of a large number of cases is required, (6) as an initial atlas-scan alignment before performing nonlinear warping, and (7) as an initial atlas-guided segmentation of brain structures before further local processing.
M3 - Article
SN - 0363-8715
VL - 30
SP - 629
EP - 641
JO - Journal of Computer Assisted Tomography
JF - Journal of Computer Assisted Tomography
IS - 4
ER -