Forest CERN: A New Decision Forest Building Technique

Md Nasim Adnan, Md Zahidul Islam

Research output: Book chapter/Published conference paperConference paper

16 Citations (Scopus)
6 Downloads (Pure)

Abstract

Persistent efforts are going on to propose more accurate decision forest building techniques. In this paper, we propose a new decision forest building technique called “Forest by Continuously Excluding Root Node (Forest CERN)”. The key feature of the proposed technique is that it strives to exclude attributes that participated in the root nodes of previous trees by imposing penalties on them to obstruct them appear in some subsequent trees. Penalties are gradually lifted in such a manner that those attributes can reappear after a while. Other than that, our technique uses bootstrap samples to generate predefined number of trees. The target of the proposed algorithm is to maximize tree diversity without impeding individual tree accuracy. We present an elaborate experimental results involving fifteen widely used data sets from the UCI Machine Learning Repository. The experimental results indicate the effectiveness of the proposed technique in most of the cases.
Original languageEnglish
Title of host publicationAdvances in Knowledge Discovery and Data Mining
Subtitle of host publication20th Pacific-Asia Conference, PAKDD 2016
EditorsR Wang, J Bailey, T Washio, J Z Huang, L Khan, G Dobbie
Place of PublicationSwitzerland
PublisherSpringer
Pages304-315
Number of pages12
Volume9651
ISBN (Electronic)9783319317533
ISBN (Print)9783319317526
DOIs
Publication statusPublished - 2016
EventThe 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016 - The University of Auckland, Auckland, New Zealand
Duration: 19 Apr 201622 Apr 2016
http://pakdd2016.pakdd.org/

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer Verlag
Volume9651
ISSN (Print)0302-9743

Conference

ConferenceThe 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016
CountryNew Zealand
CityAuckland
Period19/04/1622/04/16
OtherThe Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
is a leading international conference in the areas of knowledge discovery and data mining (KDD). It provides an international forum for researchers and industry practitioners to share their new ideas, original research results and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems and the emerging applications.
Internet address

Fingerprint Dive into the research topics of 'Forest CERN: A New Decision Forest Building Technique'. Together they form a unique fingerprint.

  • Cite this

    Adnan, M. N., & Islam, M. Z. (2016). Forest CERN: A New Decision Forest Building Technique. In R. Wang, J. Bailey, T. Washio, J. Z. Huang, L. Khan, & G. Dobbie (Eds.), Advances in Knowledge Discovery and Data Mining: 20th Pacific-Asia Conference, PAKDD 2016 (Vol. 9651, pp. 304-315). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9651). Springer. https://doi.org/10.1007/978-3-319-31753-3_25