Functional characterization of an eosinophil-specific galectin, ovine galectin-14.

Anna Young, Garry Barcham, Joanna Kemp, Jillian Dunphy, Andrew Nash, Els Meeusen

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
82 Downloads (Pure)


Across mammalian species, human galectin-10 and ovine galectin-14 are unique in their expression in eosinophils and their release into lung and gastrointestinal tissues following allergen or parasite challenge. Recombinant galectin-14 is active in carbohydrate binding assays and has been used in this study to unravel the function of this major eosinophil constituent. In vitro cultures revealed that galectin-14 is spontaneously released by eosinophils isolated from allergen-stimulated mammary gland lavage, but not by resting peripheral blood eosinophils. Galectin-14 secretion from peripheral blood eosinophils can be induced by the same stimuli that induce eosinophil degranulation. Flow cytometric analysis showed that recombinant galectin-14 can bind in vitro to eosinophils, neutrophils and activated lymphocytes. Glycan array screening indicated that galectin-14 recognizes terminal N-acetyllactosamine residues which can be modified with alpha1-2-fucosylation and, uniquely for a galectin, prefers alpha2- over alpha2-sialylation. Galectin-14 showed the greatest affinity for lacto-N-neotetraose, an immunomodulatory oligosaccharide expressed by helminths. Galectin-14 binds specifically to laminin in vitro, and to mucus and mucus producing cells on lung and intestinal tissue sections. In vivo, galectin-14 is abundantly present in mucus scrapings collected from either lungs or gastrointestinal tract following allergen or parasite challenge, respectively. These results suggest that in vivo secretion of eosinophil galectins may be specifically induced at epithelial surfaces after recruitment of eosinophils by allergic stimuli, and that eosinophil galectins may be involved in promoting adhesion and changing mucus properties during parasite infection and allergies.
Original languageEnglish
Pages (from-to)423-432
Number of pages10
JournalGlycoconjugate Journal
Issue number4
Publication statusPublished - 2009


Dive into the research topics of 'Functional characterization of an eosinophil-specific galectin, ovine galectin-14.'. Together they form a unique fingerprint.

Cite this