Functional paralysis of human natural killer cells by alphaherpesviruses

Tessa Mollie Campbell, Brian Patrick McSharry, Megan Steain, Tiffany Ann Russell, David Carl Tscharke, Jarrod John Kennedy, Barry Slobedman, Allison Abendroth

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Natural killer (NK) cells are implicated as important anti-viral immune effectors in varicella zoster virus (VZV) infection. VZV can productively infect human NK cells, yet it is unknown how, or if, VZV can directly affect NK cell function. Here we demonstrate that VZV potently impairs the ability of NK cells to respond to target cell stimulation in vitro, leading to a loss of both cytotoxic and cytokine responses. Remarkably, not only were VZV infected NK cells affected, but VZV antigen negative NK cells that were exposed to virus in culture were also inhibited. This powerful impairment of function was dependent on direct contact between NK cells and VZV infected inoculum cells. Profiling of the NK cell surface receptor phenotype by multiparameter flow cytometry revealed that functional receptor expression is predominantly stable. Furthermore, inhibited NK cells were still capable of releasing cytotoxic granules when the stimulation signal bypassed receptor/ligand interactions and early signalling, suggesting that VZV paralyses NK cells from responding. Phosflow examination of key components in the degranulation signalling cascade also demonstrated perturbation following culture with VZV. In addition to inhibiting degranulation, IFN-γ and TNF production were also repressed by VZV co-culture, which was most strongly regulated in VZV infected NK cells. Interestingly, the closely related virus, herpes simplex virus type 1 (HSV-1), was also capable of efficiently infecting NK cells in a cell-associated manner, and demonstrated a similar capacity to render NK cells unresponsive to target cell stimulation–however HSV-1 differentially targeted cytokine production compared to VZV. Our findings progress a growing understanding of pathogen inhibition of NK cell function, and reveal a previously unre-ported strategy for VZV to manipulate the immune response.

Original languageEnglish
Article numbere1007784
Pages (from-to)1-26
Number of pages26
JournalPLoS Pathogens
Issue number6
Publication statusPublished - 13 Jun 2019


Dive into the research topics of 'Functional paralysis of human natural killer cells by alphaherpesviruses'. Together they form a unique fingerprint.

Cite this