Abstract
Climate models predict an increase in the frequency and duration of heatwaves with an increase in intensity already strongly evident worldwide. The aim of this work was to evaluate the effect of two heatwave-related parameters (intensity and duration) during berry ripening and identify a threshold for berry survival and flavonoid accumulation. A Doehlert experimental design was used to test three temperature intensities (maxima of 35, 46, and 54 °C) and five durations (3 to 39 h), with treatments applied at the bunch level shortly after véraison. Berry skin and seeds were analysed by liquid chromatography-triple quadrupole-mass spectrometry (LC-QqQ-MS) for flavonoids (flavonols, anthocyanins, free flavan-3-ols, and tannins). Berries exposed to 46 °C showed little difference compared to 35 °C. However, berries reaching temperatures around 54 °C were completely desiccated, and all flavonoids were significantly decreased except for skin flavonols on a per berry basis and seed tannins in most cases. Some compounds, such as dihydroxylated flavonoids and galloylated flavan-3-ols (free and polymerised), were in higher proportion in damaged berries suggesting they were less degraded or more synthesised upon heating. Overall, irreversible berry damages and substantial compositional changes were observed and the berry survival threshold was estimated at around 50–53 °C for mid-ripe Shiraz berries, regardless of the duration of exposure
Original language | English |
---|---|
Article number | 4341 |
Pages (from-to) | 1-24 |
Number of pages | 24 |
Journal | Molecules |
Volume | 24 |
Issue number | 23 |
DOIs | |
Publication status | Published - 27 Nov 2019 |