TY - JOUR
T1 - High prevalence of ciprofloxacin resistance in Escherichia coli isolated from chickens, humans and the environment
T2 - An emerging one health issue
AU - Das, Tridip
AU - Nath, Chandan
AU - Das, Pallabi
AU - Ghosh, Keya
AU - Logno, Tahia Ahmed
AU - Debnath, Pankqj
AU - Dash, Shuvo
AU - Devnath, Himadri Shankar
AU - Das, Shubhagata
AU - Islam, Md Zohorul
N1 - Publisher Copyright:
© 2023 Das et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/11
Y1 - 2023/11
N2 - The emergence of antimicrobial resistance in commensal bacteria poses a serious public health burden worldwide. Commensals can disseminate the resistance genes to pathogenic bacteria causing life-threatening infections. This cross-sectional study was designed to investigate the antimicrobial resistance pattern and molecular mechanism(s) of ciprofloxacin resistance in commensal E. coli from three major one health components (humans, animals and the environment) in Bangladesh. Samples were randomly collected from broiler chickens, broiler farm environments and hospitalized human patients from the same geographical area. Isolation and identification of E. coli were performed following standard bacteriological techniques. Antimicrobial susceptibility testing (AST) was performed by disk diffusion and broth microdilution methods. Mutation at the quinolone-resistance determining region (QRDR) was analyzed by sequencing. Of 450 samples, a total of 287 (63.8%; 95% CI 59.2-68.1%) E. coli strains was isolated, where 240 (83.6%; 95% CI 78.9-87.5%) strains were phenotypically resistant to ciprofloxacin. The prevalence of ciprofloxacin-resistant E. coli in broiler chicken, broiler farm environments and hospitalized human patients are 77.6%, 88.8% and 89% respectively. In AST against nine antimicrobials, all the isolates were found to be multidrug-resistant (MDR). The minimum inhibitory concentration (MIC) of ciprofloxacin was ranged from 4 to >128mg/L. Point mutations were detected in several sites of QRDR, specifically at 83 and 87 amino acid positions in gyrA gene, and 56, 57, 78, 80 and 84 amino acid positions in parC gene. Mutations resulted in amino acid substitutions. Phylogenetic analysis of gyrA and parC gene sequences showed a close relationship between the strains isolated from different sources. This study demonstrates a high prevalence of ciprofloxacin resistance in commensal E. coli in humans, animals and environment interface and their genealogically similarity poses an alarming public health consequence.
AB - The emergence of antimicrobial resistance in commensal bacteria poses a serious public health burden worldwide. Commensals can disseminate the resistance genes to pathogenic bacteria causing life-threatening infections. This cross-sectional study was designed to investigate the antimicrobial resistance pattern and molecular mechanism(s) of ciprofloxacin resistance in commensal E. coli from three major one health components (humans, animals and the environment) in Bangladesh. Samples were randomly collected from broiler chickens, broiler farm environments and hospitalized human patients from the same geographical area. Isolation and identification of E. coli were performed following standard bacteriological techniques. Antimicrobial susceptibility testing (AST) was performed by disk diffusion and broth microdilution methods. Mutation at the quinolone-resistance determining region (QRDR) was analyzed by sequencing. Of 450 samples, a total of 287 (63.8%; 95% CI 59.2-68.1%) E. coli strains was isolated, where 240 (83.6%; 95% CI 78.9-87.5%) strains were phenotypically resistant to ciprofloxacin. The prevalence of ciprofloxacin-resistant E. coli in broiler chicken, broiler farm environments and hospitalized human patients are 77.6%, 88.8% and 89% respectively. In AST against nine antimicrobials, all the isolates were found to be multidrug-resistant (MDR). The minimum inhibitory concentration (MIC) of ciprofloxacin was ranged from 4 to >128mg/L. Point mutations were detected in several sites of QRDR, specifically at 83 and 87 amino acid positions in gyrA gene, and 56, 57, 78, 80 and 84 amino acid positions in parC gene. Mutations resulted in amino acid substitutions. Phylogenetic analysis of gyrA and parC gene sequences showed a close relationship between the strains isolated from different sources. This study demonstrates a high prevalence of ciprofloxacin resistance in commensal E. coli in humans, animals and environment interface and their genealogically similarity poses an alarming public health consequence.
UR - http://www.scopus.com/inward/record.url?scp=85177777152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85177777152&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0294043
DO - 10.1371/journal.pone.0294043
M3 - Article
C2 - 37983240
AN - SCOPUS:85177777152
SN - 1932-6203
VL - 18
JO - PLoS One
JF - PLoS One
IS - 11
M1 - e0294043
ER -