Influence of prey size and environmental factors on predation by Podisus maculiventris (Hemiptera: Pentatomidae) on viburnum leaf beetle (Coleoptera: Chrysomelidae)

Gaylord Desurmont, Paul Weston

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Experiments were conducted under laboratory conditions to determine the influence of the relative sizes of predator and prey, temperature, presence of refugia, size of the search area, and host-plant species on the predation performance of Podisus maculiventris (Say) nymphs against viburnum leaf beetle, Pyrrhalta viburni (Paykull), a new landscape pest in North America that feeds on the foliage of species of Viburnum L. (Caprifoliaceae). Predator handling time was positively correlated with body mass of the prey for all instars of P. maculiventris, but the rate of increase of handling time relative to prey mass decreased as predator age increased. Temperature was positively correlated with predation rates, but the presence of refugia did not have an impact on predation. The influence of host-plant species and size of the search area was tested on southern arrowwood (Viburnum dentatum L.) and American cranberrybush (Viburnum opulus L. var. americanum Aiton). There was a significant interaction between plant species and size of the search area, the species effect becoming significant as leaf surface area increased. In the case of southern arrowwood a negative correlation between size of the search area and predation rate was also detected. The identification of these factors adds valuable knowledge for using P. maculiventris as a biological-control agent against P. viburni.
Original languageEnglish
Pages (from-to)192-202
Number of pages11
JournalCanadian Entomologist
Volume140
Issue number2
DOIs
Publication statusPublished - 2008

Fingerprint Dive into the research topics of 'Influence of prey size and environmental factors on predation by Podisus maculiventris (Hemiptera: Pentatomidae) on viburnum leaf beetle (Coleoptera: Chrysomelidae)'. Together they form a unique fingerprint.

  • Cite this