Initiation of Evolutionary Algorithms

Adrian O'Connor, Junbin Gao, John Louis

Research output: Book chapter/Published conference paperConference paper

8 Downloads (Pure)

Abstract

Evolutionary Algorithms are a relatively recent introduction to the field of optimization [1], [2].  They are robust and able to solve problems that would otherwise be difficult or impossible to solve using calculus or other gadient based methods.  The termination criteria for evolutionary algorithms [4] are important considerations [3].  Knowing when an evolutionary algorithm has done all it can do, whether that be convergence to a solution, stalling, or deceleration, allows one to define rules that identify such situations and direct the algorithm to act accordingly.  Â
Original languageEnglish
Title of host publicationWORLDCOMP'09
Subtitle of host publicationWorld Congress in Computer Science, Computer Engineering, and Applied Computing
Place of PublicationUSA
PublisherCSREA Press
Pages73-78
Number of pages6
ISBN (Electronic)1601321066
Publication statusPublished - 2009
EventInternational Conference on Genetic and Evolutionary Methods (GEM) - Las Vegas Nevada, USA, New Zealand
Duration: 13 Jul 200916 Jul 2009

Conference

ConferenceInternational Conference on Genetic and Evolutionary Methods (GEM)
CountryNew Zealand
Period13/07/0916/07/09

Fingerprint

Evolutionary algorithms
Deceleration

Cite this

O'Connor, A., Gao, J., & Louis, J. (2009). Initiation of Evolutionary Algorithms. In WORLDCOMP'09: World Congress in Computer Science, Computer Engineering, and Applied Computing (pp. 73-78). USA: CSREA Press.
O'Connor, Adrian ; Gao, Junbin ; Louis, John. / Initiation of Evolutionary Algorithms. WORLDCOMP'09: World Congress in Computer Science, Computer Engineering, and Applied Computing. USA : CSREA Press, 2009. pp. 73-78
@inproceedings{1b9f4f843380455bbbe5b572ae9caaa1,
title = "Initiation of Evolutionary Algorithms",
abstract = "Evolutionary{\^A} Algorithms{\^A} are{\^A} a{\^A} relatively{\^A} recent{\^A} introduction{\^A} to{\^A} the{\^A} field{\^A} of{\^A} optimization{\^A} [1],{\^A} [2].{\^A} {\^A} They{\^A} are{\^A} robust{\^A} and{\^A} able{\^A} to{\^A} solve{\^A} problems{\^A} that{\^A} would{\^A} otherwise{\^A} be{\^A} difficult{\^A} or{\^A} impossible{\^A} to{\^A} solve{\^A} using{\^A} calculus{\^A} or{\^A} other{\^A} gadient{\^A} based{\^A} methods.{\^A} {\^A} The{\^A} termination{\^A} criteria{\^A} for{\^A} evolutionary{\^A} algorithms{\^A} [4]{\^A} are{\^A} important{\^A} considerations{\^A} [3].{\^A} {\^A} Knowing{\^A} when{\^A} an{\^A} evolutionary{\^A} algorithm{\^A} has{\^A} done{\^A} all{\^A} it{\^A} can{\^A} do,{\^A} whether{\^A} that{\^A} be{\^A} convergence{\^A} to{\^A} a{\^A} solution,{\^A} stalling,{\^A} or{\^A} deceleration,{\^A} allows{\^A} one{\^A} to{\^A} define{\^A} rules{\^A} that{\^A} identify{\^A} such{\^A} situations{\^A} and{\^A} direct{\^A} the{\^A} algorithm{\^A} to{\^A} act{\^A} accordingly.{\^A} {\^A} {\^A}",
keywords = "Open access version available, Class{\^A} A{\^A} solutions, Class{\^A} B{\^A} solutions, Evolutionary{\^A} algorithms, SSE, Stochastic{\^A} Funnel{\^A} Algorithm, TSS",
author = "Adrian O'Connor and Junbin Gao and John Louis",
note = "Imported on 03 May 2017 - DigiTool details were: publisher = USA: CSREA Press, 2009. editor/s (773b) = Hamid R Arabnia, Ashu M G Solo (Eds ):; Event dates (773o) = July 13-16, 2009; Parent title (773t) = International Conference on Genetic and Evolutionary Methods (GEM).",
year = "2009",
language = "English",
pages = "73--78",
booktitle = "WORLDCOMP'09",
publisher = "CSREA Press",

}

O'Connor, A, Gao, J & Louis, J 2009, Initiation of Evolutionary Algorithms. in WORLDCOMP'09: World Congress in Computer Science, Computer Engineering, and Applied Computing. CSREA Press, USA, pp. 73-78, International Conference on Genetic and Evolutionary Methods (GEM), New Zealand, 13/07/09.

Initiation of Evolutionary Algorithms. / O'Connor, Adrian; Gao, Junbin; Louis, John.

WORLDCOMP'09: World Congress in Computer Science, Computer Engineering, and Applied Computing. USA : CSREA Press, 2009. p. 73-78.

Research output: Book chapter/Published conference paperConference paper

TY - GEN

T1 - Initiation of Evolutionary Algorithms

AU - O'Connor, Adrian

AU - Gao, Junbin

AU - Louis, John

N1 - Imported on 03 May 2017 - DigiTool details were: publisher = USA: CSREA Press, 2009. editor/s (773b) = Hamid R Arabnia, Ashu M G Solo (Eds ):; Event dates (773o) = July 13-16, 2009; Parent title (773t) = International Conference on Genetic and Evolutionary Methods (GEM).

PY - 2009

Y1 - 2009

N2 - Evolutionary Algorithms are a relatively recent introduction to the field of optimization [1], [2].  They are robust and able to solve problems that would otherwise be difficult or impossible to solve using calculus or other gadient based methods.  The termination criteria for evolutionary algorithms [4] are important considerations [3].  Knowing when an evolutionary algorithm has done all it can do, whether that be convergence to a solution, stalling, or deceleration, allows one to define rules that identify such situations and direct the algorithm to act accordingly.  Â

AB - Evolutionary Algorithms are a relatively recent introduction to the field of optimization [1], [2].  They are robust and able to solve problems that would otherwise be difficult or impossible to solve using calculus or other gadient based methods.  The termination criteria for evolutionary algorithms [4] are important considerations [3].  Knowing when an evolutionary algorithm has done all it can do, whether that be convergence to a solution, stalling, or deceleration, allows one to define rules that identify such situations and direct the algorithm to act accordingly.  Â

KW - Open access version available

KW - Class A solutions

KW - Class B solutions

KW - Evolutionary algorithms

KW - SSE

KW - Stochastic Funnel Algorithm

KW - TSS

M3 - Conference paper

SP - 73

EP - 78

BT - WORLDCOMP'09

PB - CSREA Press

CY - USA

ER -

O'Connor A, Gao J, Louis J. Initiation of Evolutionary Algorithms. In WORLDCOMP'09: World Congress in Computer Science, Computer Engineering, and Applied Computing. USA: CSREA Press. 2009. p. 73-78