Intelligent type 2 diabetes risk prediction from administrative claim data

Shahadat Uddin, Tasadduq Imam, Md Ekramul Hossain, Ergun Gide, Omid Ameri Sianaki, Mohammad Ali Moni, Ashwaq Amer Mohammed, Vandana Vandana

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Type 2 diabetes is a chronic, costly disease and is a serious global population health problem. Yet, the disease is well manageable and preventable if there is an early warning. This study aims to apply supervised machine learning algorithms for developing predictive models for type 2 diabetes using administrative claim data. Following guidelines from the Elixhauser Comorbidity Index, 31 variables were considered. Five supervised machine learning algorithms were used for developing type 2 diabetes prediction models. Principal component analysis was applied to rank variables’ importance in predictive models. Random forest (RF) showed the highest accuracy (85.06%) among the algorithms, closely followed by the k-nearest neighbor (84.48%). The analysis further revealed RF as a high performing algorithm irrespective of data imbalance. As revealed by the principal component analysis, patient age is the most important predictor for type 2 diabetes, followed by a comorbid condition (i.e., solid tumor without metastasis). This study’s finding of RF as the best performing classifier is consistent with the promise of tree-based algorithms for public data in other works. Thus, the outcome can guide in designing automated surveillance of patients at risk of forming diabetes from administrative claim information and will be useful to health regulators and insurers.
Original languageEnglish
Pages (from-to)243-257
Number of pages15
JournalInformatics for Health and Social Care
Volume47
Issue number3
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Intelligent type 2 diabetes risk prediction from administrative claim data'. Together they form a unique fingerprint.

Cite this