Abstract
L.albus is an annual grain-legume crop mainly grown forhigh-protein fodder worldwide but also to produce large seeds for human consumption as a snack-food. In order to make genetic gains in grain yield, assessment of the genetic variation in the germplasm and identification of loci associated with agronomic traits are essential. Phomopsis blight (PB) and Pleiochaeta root rot (PRR), caused by the fungal pathogens Diaporthe toxica and, Pleiochaetasetosa respectively, are two major yield-limiting diseases of the L. albus crop. The extent of genetic diversity in 94 accessions of L. albus comprising: Australian and exotic cultivars, advanced breeding lines, and landraces originating from 26 different countries was determined utilizing PCR-based genic, and microarray-based Diversity Arrays Technology (DArT™), markers. All accessions were evaluated for resistance to PB in two plant tissues (leaves and stems) using either sprayed or injected spore inoculum. A subset of 58 accessions was further evaluated for resistance to PRR by growing seedlings in spore-infested potting mix. The combined data of 724 (50 genic- and 674 DArT) markers were used for cluster analysis. A subset of 324 markers with call rate≥95% and predicted disease scores of different genotypes were used to identify marker loci accounting for phenotypic variation in PB and PRR resistance using linear regression analysis. Several markers showed significant association with PB or PRR resistance at P < 0.05. Our results showed that favourable alleles for PB and PRR resistance are present in the diverse accessions investigated and they will provide valuable materials for lupin breeding.
Original language | English |
---|---|
Pages (from-to) | 210-226 |
Number of pages | 17 |
Journal | Open Journal of Genetics |
Volume | 4 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2014 |