TY - JOUR
T1 - Methylsorb
T2 - A simple method for quantifying DNA methylation using DNA-gold affinity interactions
AU - Sina, Abu Ali Ibn
AU - Carrascosa, Laura G.
AU - Palanisamy, Ramkumar
AU - Rauf, Sakandar
AU - Shiddiky, Muhammad J.A.
AU - Trau, Matt
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/10/21
Y1 - 2014/10/21
N2 - The analysis of DNA methylation is becoming increasingly important both in the clinic and also as a research tool to unravel key epigenetic molecular mechanisms in biology. Current methodologies for the quantification of regional DNA methylation (i.e., the average methylation over a region of DNA in the genome) are largely affected by comprehensive DNA sequencing methodologies which tend to be expensive, tedious, and time-consuming for many applications. Herein, we report an alternative DNA methylation detection method referred to as "Methylsorb", which is based on the inherent affinity of DNA bases to the gold surface (i.e., the trend of the affinity interactions is adenine > cytosine ≤ guanine > thymine).1 Since the degree of gold-DNA affinity interaction is highly sequence dependent, it provides a new capability to detect DNA methylation by simply monitoring the relative adsorption of bisulfite treated DNA sequences onto a gold chip. Because the selective physical adsorption of DNA fragments to gold enable a direct read-out of regional DNA methylation, the current requirement for DNA sequencing is obviated. To demonstrate the utility of this method, we present data on the regional methylation status of two CpG clusters located in the EN1 and MIR200B genes in MCF7 and MDA-MB-231 cells. The methylation status of these regions was obtained from the change in relative mass on gold surface with respect to relative adsorption of an unmethylated DNA source and this was detected using surface plasmon resonance (SPR) in a label-free and real-time manner. We anticipate that the simplicity of this method, combined with the high level of accuracy for identifying the methylation status of cytosines in DNA, could find broad application in biology and diagnostics.
AB - The analysis of DNA methylation is becoming increasingly important both in the clinic and also as a research tool to unravel key epigenetic molecular mechanisms in biology. Current methodologies for the quantification of regional DNA methylation (i.e., the average methylation over a region of DNA in the genome) are largely affected by comprehensive DNA sequencing methodologies which tend to be expensive, tedious, and time-consuming for many applications. Herein, we report an alternative DNA methylation detection method referred to as "Methylsorb", which is based on the inherent affinity of DNA bases to the gold surface (i.e., the trend of the affinity interactions is adenine > cytosine ≤ guanine > thymine).1 Since the degree of gold-DNA affinity interaction is highly sequence dependent, it provides a new capability to detect DNA methylation by simply monitoring the relative adsorption of bisulfite treated DNA sequences onto a gold chip. Because the selective physical adsorption of DNA fragments to gold enable a direct read-out of regional DNA methylation, the current requirement for DNA sequencing is obviated. To demonstrate the utility of this method, we present data on the regional methylation status of two CpG clusters located in the EN1 and MIR200B genes in MCF7 and MDA-MB-231 cells. The methylation status of these regions was obtained from the change in relative mass on gold surface with respect to relative adsorption of an unmethylated DNA source and this was detected using surface plasmon resonance (SPR) in a label-free and real-time manner. We anticipate that the simplicity of this method, combined with the high level of accuracy for identifying the methylation status of cytosines in DNA, could find broad application in biology and diagnostics.
UR - http://www.scopus.com/inward/record.url?scp=84910613646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84910613646&partnerID=8YFLogxK
U2 - 10.1021/ac502214z
DO - 10.1021/ac502214z
M3 - Article
C2 - 25226077
AN - SCOPUS:84910613646
SN - 0003-2700
VL - 86
SP - 10179
EP - 10185
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 20
ER -