MIMO Lyapunov Theory-Based RBF Neural Classifier for Traffic Sign Recognition.

King Hann Lim, Kah Phooi Seng, Li-Minn Ang

Research output: Contribution to journalArticlepeer-review

Abstract

Lyapunov theory-based radial basis function neural network (RBFNN) is developed for traffic sign recognition in this paper to perform multiple inputs multiple outputs (MIMO) classification. Multidimensional input is inserted into RBF nodes and these nodes are linked with multiple weights. An iterative weight adaptation scheme is hence designed with regards to the Lyapunov stability theory to obtain a set of optimum weights. In the design, the Lyapunov function has to be well selected to construct an energy space with a single global minimum. Weight gain is formed later to obey the Lyapunov stability theory. Detail analysis and discussion on the proposed classifier's properties are included in the paper. The performance comparisons between the proposed classifier and some existing conventional techniques are evaluated using traffic sign patterns. Simulation results reveal that our proposed system achieved better performance with lower number of training iterations.
Original languageEnglish
Article number793176
Pages (from-to)1-7
Number of pages7
JournalApplied Computational Intelligence and Soft Computing
Volume2012
DOIs
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'MIMO Lyapunov Theory-Based RBF Neural Classifier for Traffic Sign Recognition.'. Together they form a unique fingerprint.

Cite this