Motivation and analytics: Comparing business and engineering students

Natalie M. Scala, Stella Tomasi, Andrea Goncher, Karen M. Bursic

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)
    12 Downloads (Pure)


    Data analytics is a foundational topic for engineering as well as business students given its importance in subsequent coursework and curriculum. Many common, interdisciplinary analytical topics exist between the engineering and business fields; undergraduate students may approach learning those topics in various ways depending on program or major. This research examines differences in performance on analytics between engineering and business students that may be explained by differences in motivation and attitude. We use a survey and a lecture on trendlines with a common homework assignment to compare the two groups of students. Instructors of an engineering and a business course that incorporate analytics gave the same lecture on the use of spreadsheets to analyze trendline data, assigned the same individual homework assignment, and administered an end-of-module survey. The survey was built from the established MUSIC® Model of Academic Motivation. Analysis of the student data will address differences in motivation and how the program or major impacts student perception of analytical problem solving and contributes to performance on related assignments. We discuss quantitative and qualitative differences between engineering and business majors, concluding with a discussion of future work and some strategies for educators to use when teaching analytics.
    Original languageEnglish
    Pages (from-to)1-11
    Number of pages11
    JournalINFORMS Transactions on Education
    Issue number1
    Early online date09 Nov 2017
    Publication statusPublished - Sept 2018


    Dive into the research topics of 'Motivation and analytics: Comparing business and engineering students'. Together they form a unique fingerprint.

    Cite this