TY - JOUR
T1 - Motivation and analytics
T2 - Comparing business and engineering students
AU - Scala, Natalie M.
AU - Tomasi, Stella
AU - Goncher, Andrea
AU - Bursic, Karen M.
N1 - Includes bibliographical references.
PY - 2018/9
Y1 - 2018/9
N2 - Data analytics is a foundational topic for engineering as well as business students given its importance in subsequent coursework and curriculum. Many common, interdisciplinary analytical topics exist between the engineering and business fields; undergraduate students may approach learning those topics in various ways depending on program or major. This research examines differences in performance on analytics between engineering and business students that may be explained by differences in motivation and attitude. We use a survey and a lecture on trendlines with a common homework assignment to compare the two groups of students. Instructors of an engineering and a business course that incorporate analytics gave the same lecture on the use of spreadsheets to analyze trendline data, assigned the same individual homework assignment, and administered an end-of-module survey. The survey was built from the established MUSIC® Model of Academic Motivation. Analysis of the student data will address differences in motivation and how the program or major impacts student perception of analytical problem solving and contributes to performance on related assignments. We discuss quantitative and qualitative differences between engineering and business majors, concluding with a discussion of future work and some strategies for educators to use when teaching analytics.
AB - Data analytics is a foundational topic for engineering as well as business students given its importance in subsequent coursework and curriculum. Many common, interdisciplinary analytical topics exist between the engineering and business fields; undergraduate students may approach learning those topics in various ways depending on program or major. This research examines differences in performance on analytics between engineering and business students that may be explained by differences in motivation and attitude. We use a survey and a lecture on trendlines with a common homework assignment to compare the two groups of students. Instructors of an engineering and a business course that incorporate analytics gave the same lecture on the use of spreadsheets to analyze trendline data, assigned the same individual homework assignment, and administered an end-of-module survey. The survey was built from the established MUSIC® Model of Academic Motivation. Analysis of the student data will address differences in motivation and how the program or major impacts student perception of analytical problem solving and contributes to performance on related assignments. We discuss quantitative and qualitative differences between engineering and business majors, concluding with a discussion of future work and some strategies for educators to use when teaching analytics.
KW - Developing analytical skills
KW - Interdisciplinary teaching
KW - Spreadsheet modeling
KW - Teaching engineering
KW - Teaching with technology
U2 - 10.1287/ited.2017.0187
DO - 10.1287/ited.2017.0187
M3 - Article
SN - 1532-0545
VL - 19
SP - 1
EP - 11
JO - INFORMS Transactions on Education
JF - INFORMS Transactions on Education
IS - 1
ER -