Abstract
In this work, we use a symbolic algebra package to derive a family of finite difference approximations for the biharmonic equation on a 9-point compact stencil. The solution and its first derivatives are carried as unknowns at the grid points. Dirichlet boundary conditions are thus incorporated naturally. Since the approximations use the 9-point compact stencil, no special formulas are needed near the boundaries. Both second-order and fourth-order discretizations are derived. The fourth-order approximations produce more accurate results than the 13-point classical stencil or the commonly used system of two second-order equations coupled with the boundary condition. The method suffers from slow convergence when classical iteration methods such as Gauss-Seidel or SOR are employed. In order to alleviate this problem we propose several multigrid techniques that exhibit grid-independent convergence and solve the biharmonic equation in a small amount of computer time. Test results from three different problems, including Stokes flow in a driven cavity, are reported.
Original language | English |
---|---|
Pages (from-to) | 1575-1585 |
Number of pages | 11 |
Journal | SIAM Journal of Scientific Computing |
Volume | 19 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 1998 |