Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections and are responsible for significant morbidity and health care costs worldwide. The main bacterial cause of uncomplicated UTI is Escherichia coli, which possesses numerous virulence factors (VFs). Many studies of the pathogenesis of E. coli UTI have centered on VF genes. Hence, the development of better molecular assays to study VF genes would facilitate these studies. We developed a highly sensitive and specific multiplex PCR-based reverse line blot (mPCR/RLB) assay to simultaneously detect 22 VF genes of uropathogenic E. coli and then used it to characterize 180 isolates from nonpregnant women of child-bearing age with cystitis and 153 fecal isolates from similar-age healthy women, in regional New South Wales, Australia. The assay accurately identified all VF genes (of the 22 under study) known to be present in 30 previously characterized control strains. The detection limits were 28 ng of DNA from E. coli isolates and 50 CFU/ml in mock-infected urine specimens containing known concentrations of E. coli. Cystitis isolates (compared to the fecal isolates) showed a significantly higher prevalence of 18 individual VF genes and contained significantly more VF genes per isolate (median number, 18.5 versus 6.5 [P = 0.001]). Discordance between paired probes for a given VF gene occurred in several clinical test isolates but no reference strains and among the test isolates was associated with fecal source (10% of VF genes versus 2% for cystitis isolates [P < 0.001]). This novel mPCR/RLB method is a potentially powerful tool for investigating the prevalence and distribution of VFs in E. coli.
Original language | English |
---|---|
Pages (from-to) | 1198-1202 |
Number of pages | 5 |
Journal | Applied and Environmental Microbiology |
Volume | 78 |
Issue number | 4 |
DOIs | |
Publication status | Published - Feb 2012 |