Muscles within muscles: the neuromotor control of intra-muscular segments

James Wickham, J.M.M. Brown

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

The aim of this investigation was to anatomically identify, and then determine the function of, individual segments within the human deltoid muscle. The anatomical structure of the deltoid was determined through dissection and/or observation of the shoulder girdles of 11 male cadavers (aged 65-84 years). These results indicate that the deltoid consists of seven anatomical segments (D1-D7) based upon the distinctive arrangement of each segment's origin and insertion. Radiographic analysis of a cadaveric shoulder joint suggested that only the postero-medial segment D7 has a line of action directed below the shoulder joint's axis of rotation. The functional role of each individual segment was then determined utilising an electromyographic (EMG) technique. Seven miniature (1 mm active plate; 7 mm interelectrode distance) bipolar surface electrodes were positioned over the proximal portion of each segment's muscle belly in 18 male and female subjects (18-30 years). EMG waveforms were then recorded during the production of rapid isometric shoulder abduction and adduction force impulses with the shoulder joint in 40 degrees of abduction in the plane of the scapula. Each subject randomly performed 15 abduction and 15 adduction isometric force impulses following a short familiarisation period. All subjects received visual feed back on the duration and amplitude of each isometric force impulse produced via a visual force-time display which compared subject performance to a criterion force-time curve. Movement time was 400 ms (time-to-peak isometric force) at an intensity level of 50% maximal voluntary contraction. Temporal and intensity analyses of the EMG waveforms, as well as temporal analysis of the isometric force impulses, revealed the neuromotor control strategies utilised by the CNS to control the activity of each muscle segment. The results showed that segmental neuromotor control strategies differ across the breadth of the muscle and that individual segments of the deltoid can be identified as having either 'prime mover', 'synergist', 'stabiliser' or 'antagonist' functions; functional classifications normally associated with whole muscle function. Therefore, it was concluded that the CNS can 'fine tune' the activity of at least six discrete segments within the human deltoid muscle to efficiently meet the demands of the imposed motor task.
Original languageEnglish
Pages (from-to)219-225
Number of pages6
JournalEuropean Journal of Applied Physiology
Volume78
Issue number3
DOIs
Publication statusPublished - Aug 1998

Fingerprint

Muscles
Shoulder Joint
Deltoid Muscle
Scapula
Cadaver
Dissection
Electrodes
Observation

Cite this

@article{09d65052db1348729a97785de931ea3b,
title = "Muscles within muscles: the neuromotor control of intra-muscular segments",
abstract = "The aim of this investigation was to anatomically identify, and then determine the function of, individual segments within the human deltoid muscle. The anatomical structure of the deltoid was determined through dissection and/or observation of the shoulder girdles of 11 male cadavers (aged 65-84 years). These results indicate that the deltoid consists of seven anatomical segments (D1-D7) based upon the distinctive arrangement of each segment's origin and insertion. Radiographic analysis of a cadaveric shoulder joint suggested that only the postero-medial segment D7 has a line of action directed below the shoulder joint's axis of rotation. The functional role of each individual segment was then determined utilising an electromyographic (EMG) technique. Seven miniature (1 mm active plate; 7 mm interelectrode distance) bipolar surface electrodes were positioned over the proximal portion of each segment's muscle belly in 18 male and female subjects (18-30 years). EMG waveforms were then recorded during the production of rapid isometric shoulder abduction and adduction force impulses with the shoulder joint in 40 degrees of abduction in the plane of the scapula. Each subject randomly performed 15 abduction and 15 adduction isometric force impulses following a short familiarisation period. All subjects received visual feed back on the duration and amplitude of each isometric force impulse produced via a visual force-time display which compared subject performance to a criterion force-time curve. Movement time was 400 ms (time-to-peak isometric force) at an intensity level of 50{\%} maximal voluntary contraction. Temporal and intensity analyses of the EMG waveforms, as well as temporal analysis of the isometric force impulses, revealed the neuromotor control strategies utilised by the CNS to control the activity of each muscle segment. The results showed that segmental neuromotor control strategies differ across the breadth of the muscle and that individual segments of the deltoid can be identified as having either 'prime mover', 'synergist', 'stabiliser' or 'antagonist' functions; functional classifications normally associated with whole muscle function. Therefore, it was concluded that the CNS can 'fine tune' the activity of at least six discrete segments within the human deltoid muscle to efficiently meet the demands of the imposed motor task.",
keywords = "Deltoid Electromyography Functional differentiation Motor control Muscle function",
author = "James Wickham and J.M.M. Brown",
year = "1998",
month = "8",
doi = "10.1007/s004210050410",
language = "English",
volume = "78",
pages = "219--225",
journal = "European Journal of Applied Physiology and Occupational Physiology",
issn = "1439-6319",
publisher = "Springer-Verlag London Ltd.",
number = "3",

}

Muscles within muscles: the neuromotor control of intra-muscular segments. / Wickham, James; Brown, J.M.M.

In: European Journal of Applied Physiology, Vol. 78, No. 3, 08.1998, p. 219-225.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Muscles within muscles: the neuromotor control of intra-muscular segments

AU - Wickham, James

AU - Brown, J.M.M.

PY - 1998/8

Y1 - 1998/8

N2 - The aim of this investigation was to anatomically identify, and then determine the function of, individual segments within the human deltoid muscle. The anatomical structure of the deltoid was determined through dissection and/or observation of the shoulder girdles of 11 male cadavers (aged 65-84 years). These results indicate that the deltoid consists of seven anatomical segments (D1-D7) based upon the distinctive arrangement of each segment's origin and insertion. Radiographic analysis of a cadaveric shoulder joint suggested that only the postero-medial segment D7 has a line of action directed below the shoulder joint's axis of rotation. The functional role of each individual segment was then determined utilising an electromyographic (EMG) technique. Seven miniature (1 mm active plate; 7 mm interelectrode distance) bipolar surface electrodes were positioned over the proximal portion of each segment's muscle belly in 18 male and female subjects (18-30 years). EMG waveforms were then recorded during the production of rapid isometric shoulder abduction and adduction force impulses with the shoulder joint in 40 degrees of abduction in the plane of the scapula. Each subject randomly performed 15 abduction and 15 adduction isometric force impulses following a short familiarisation period. All subjects received visual feed back on the duration and amplitude of each isometric force impulse produced via a visual force-time display which compared subject performance to a criterion force-time curve. Movement time was 400 ms (time-to-peak isometric force) at an intensity level of 50% maximal voluntary contraction. Temporal and intensity analyses of the EMG waveforms, as well as temporal analysis of the isometric force impulses, revealed the neuromotor control strategies utilised by the CNS to control the activity of each muscle segment. The results showed that segmental neuromotor control strategies differ across the breadth of the muscle and that individual segments of the deltoid can be identified as having either 'prime mover', 'synergist', 'stabiliser' or 'antagonist' functions; functional classifications normally associated with whole muscle function. Therefore, it was concluded that the CNS can 'fine tune' the activity of at least six discrete segments within the human deltoid muscle to efficiently meet the demands of the imposed motor task.

AB - The aim of this investigation was to anatomically identify, and then determine the function of, individual segments within the human deltoid muscle. The anatomical structure of the deltoid was determined through dissection and/or observation of the shoulder girdles of 11 male cadavers (aged 65-84 years). These results indicate that the deltoid consists of seven anatomical segments (D1-D7) based upon the distinctive arrangement of each segment's origin and insertion. Radiographic analysis of a cadaveric shoulder joint suggested that only the postero-medial segment D7 has a line of action directed below the shoulder joint's axis of rotation. The functional role of each individual segment was then determined utilising an electromyographic (EMG) technique. Seven miniature (1 mm active plate; 7 mm interelectrode distance) bipolar surface electrodes were positioned over the proximal portion of each segment's muscle belly in 18 male and female subjects (18-30 years). EMG waveforms were then recorded during the production of rapid isometric shoulder abduction and adduction force impulses with the shoulder joint in 40 degrees of abduction in the plane of the scapula. Each subject randomly performed 15 abduction and 15 adduction isometric force impulses following a short familiarisation period. All subjects received visual feed back on the duration and amplitude of each isometric force impulse produced via a visual force-time display which compared subject performance to a criterion force-time curve. Movement time was 400 ms (time-to-peak isometric force) at an intensity level of 50% maximal voluntary contraction. Temporal and intensity analyses of the EMG waveforms, as well as temporal analysis of the isometric force impulses, revealed the neuromotor control strategies utilised by the CNS to control the activity of each muscle segment. The results showed that segmental neuromotor control strategies differ across the breadth of the muscle and that individual segments of the deltoid can be identified as having either 'prime mover', 'synergist', 'stabiliser' or 'antagonist' functions; functional classifications normally associated with whole muscle function. Therefore, it was concluded that the CNS can 'fine tune' the activity of at least six discrete segments within the human deltoid muscle to efficiently meet the demands of the imposed motor task.

KW - Deltoid Electromyography Functional differentiation Motor control Muscle function

U2 - 10.1007/s004210050410

DO - 10.1007/s004210050410

M3 - Article

VL - 78

SP - 219

EP - 225

JO - European Journal of Applied Physiology and Occupational Physiology

JF - European Journal of Applied Physiology and Occupational Physiology

SN - 1439-6319

IS - 3

ER -