Network based approach to identify interactions between Type 2 diabetes and cancer comorbidities

Saidul Islam Nayan, Md Habibur Rahman, Md Mehedi Hasan, Sheikh Md Razibul Hasan Raj, Mohammad Ali Abdullah Almoyad, Pietro Liò, Mohammad Ali Moni

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


High blood sugar and insulin insensitivity causes the lifelong chronic metabolic disease called Type 2 diabetes (T2D) which has a higher chance of developing different malignancies. T2D with comorbidities like Cancers can make normal medications for those disorders more difficult. There may be a significant correlation between comorbidities and have an impact on one another's health. These associations may be due to a number of direct and indirect mechanisms. Such molecular mechanisms that underpin T2D and cancer are yet unknown. However, the large volumes of data available on these diseases allowed us to use analytical tools for uncovering their interrelated pathways. Here, we tried to present a system for investigating potential comorbidity relationships between T2D and Cancer disease by looking at the molecular processes involved, analyzing a huge number of freely accessible transcriptomic datasets of various disorders using bioinformatics. Using semantic similarity and gene set enrichment analysis, we created an informatics pipeline that evaluates and integrates Gene Ontology (GO), expression of genes, and biological process data. We discovered genes that are common in T2D and Cancer along with molecular pathways and GOs. We compared the top 200 Differentially Expressed Genes (DEGs) from each selected T2D and cancer dataset and found the most significant common genes. Among all the common genes 13 genes were found most frequent. We also found 4 common GO terms: GO:0000003, GO:0000122, GO:0000165, and GO:0000278 among all the common GO terms between T2d and different cancers. Using these genes and GO term semantic similarity, we calculated the distance between these two diseases. The semantic similarity results of our study showed a higher association of Liver Cancer (LiC), Breast Cancer (BreC), Colorectal Cancer (CC), and Bladder Cancer (BlaC) with T2D. Furthermore we found KIF4A, NUSAP1, CENPF, CCNB1, TOP2A, CCNB2, RRM2, HMMR, NDC80, NCAPG, and IGFBP5 common hub proteins among different cancers correlated to T2D. AGE-RAGE signaling pathway in diabetic complications, Osteoclast differentiation, TNF signaling pathway, IL-17 signaling pathway, p53 signaling pathway, MAPK signaling pathway, Human T-cell leukemia virus 1 infection, and Non-alcoholic fatty liver disease are the 8 most significant pathways found among 18 common pathways between T2D and selected cancers. As a result of our technique, we now know more about disease pathways that are critical between T2D and cancer.
Original languageEnglish
Article number122244
Pages (from-to)1-16
Number of pages16
JournalLife Sciences
Early online dateNov 2023
Publication statusPublished - 15 Dec 2023


Dive into the research topics of 'Network based approach to identify interactions between Type 2 diabetes and cancer comorbidities'. Together they form a unique fingerprint.

Cite this