Abstract
The wheat pathogen Zymoseptoria tritici possesses a large number of accessory chromosomes that may be present or absent in its genome. The genome of the reference isolate IPO323 has been assembled to a very high standard and contains 21 full length chromosome sequences, 8 of which represent accessory chromosomes. The IPO323 reference, when combined with low-cost next-generation sequencing and bioinformatics, can be used as a powerful tool to assess the presence or absence of accessory chromosomes. We present an outline of a range of bioinformatics techniques that can be applied to the analysis of presence-absence variation among accessory chromosomes across 13 novel isolates of Z. tritici.
Original language | English |
---|---|
Pages (from-to) | 71-75 |
Number of pages | 5 |
Journal | Fungal Genetics and Biology |
Volume | 79 |
DOIs | |
Publication status | Published - Jun 2015 |