Abstract
The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a serious pest species both in its original distribution region of northern America and its invaded regions of eastern Asia and southern Europe. The odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) play important roles in host and mate locating, thus might play a significant role in the success of the species as an invader, which has not been characterized yet. We identified 10 OBPs and 5 CSPs in L. oryzophilus and investigated the expression profiles of these genes in various tissues by quantitative real-time PCR. Five classic OBPs were predominantly expressed in the antennae. CSPs were expressed ubiquitously with particularly high transcript levels in antennae, legs, and wings. Three antenna-specific OBPs (LoOBP1, 8, 11) were up-regulated following 1-3 d of food deprivation and down-regulated afterward. These findings suggest most classic OBPs are likely involved in chemoreception whereas CSPs as well as the minus-C OBPs may have broader physiological functions, which in turn may help to understand the molecular aspects of chemical communication in this invasive insect.
Original language | English |
---|---|
Pages (from-to) | 1276-1286 |
Number of pages | 11 |
Journal | Environmental Entomology |
Volume | 45 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2016 |