TY - JOUR
T1 - Oscillations in the basolateral amygdala
T2 - aversive stimulation is state dependent and resets the oscillatory phase
AU - Crane, J. W.
AU - Windels, F
AU - Sah, P
N1 - Imported on 12 Apr 2017 - DigiTool details were: month (773h) = September, 2009; Journal title (773t) = Journal of Neurophysiology. ISSNs: 0022-3077;
PY - 2009/9
Y1 - 2009/9
N2 - Slow oscillations (<1 Hz) in neural activity occur during sleep and quiet wakefulness in both animals and humans. Here we show that in urethan-anesthetized animals, neurons in the basolateral amygdala in vivo display a slow oscillation between resting membrane potential (down-state) and depolarized potentials (up-states) occurring at a frequency of approximately 0.3 Hz. This oscillation is insensitive to the holding potential and continues unabated under voltage clamp, indicating that up-states are synaptically driven. Somatosensory stimulation (footshock) delivered during the down-state evoked an all-or-none transition into an up-state. When delivered during down-states, footshocks triggered up-states and reset the phase of the neural oscillation, effectively synchronizing activity in the basolateral amygdala. This phase reset was reproduced by posterior thalamus stimulation, confirming that it was mediated by aversive sensory input. In contrast, a footshock delivered during the up-state was ineffective in stimulating BLA neurons. We conclude that oscillatory activity in the basolateral amygdala is driven by ensembles of cortical neurons. These ensembles gate the response of amygdala neurons to aversive stimulation in a state-dependent manner. Aversive stimulation is effective when the network is in the down-state but ineffective when the network is in an up-state.
AB - Slow oscillations (<1 Hz) in neural activity occur during sleep and quiet wakefulness in both animals and humans. Here we show that in urethan-anesthetized animals, neurons in the basolateral amygdala in vivo display a slow oscillation between resting membrane potential (down-state) and depolarized potentials (up-states) occurring at a frequency of approximately 0.3 Hz. This oscillation is insensitive to the holding potential and continues unabated under voltage clamp, indicating that up-states are synaptically driven. Somatosensory stimulation (footshock) delivered during the down-state evoked an all-or-none transition into an up-state. When delivered during down-states, footshocks triggered up-states and reset the phase of the neural oscillation, effectively synchronizing activity in the basolateral amygdala. This phase reset was reproduced by posterior thalamus stimulation, confirming that it was mediated by aversive sensory input. In contrast, a footshock delivered during the up-state was ineffective in stimulating BLA neurons. We conclude that oscillatory activity in the basolateral amygdala is driven by ensembles of cortical neurons. These ensembles gate the response of amygdala neurons to aversive stimulation in a state-dependent manner. Aversive stimulation is effective when the network is in the down-state but ineffective when the network is in an up-state.
U2 - 10.1152/jn.00438.2009
DO - 10.1152/jn.00438.2009
M3 - Article
VL - 102
SP - 1379
EP - 1387
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
SN - 0022-3077
IS - 3
ER -