TY - JOUR
T1 - Phenology and population differentiation in reproductive plasticity in Feathertop Rhodes Grass (Chloris virgata Sw.)
AU - Asaduzzaman, Md
AU - Wu, Hanwen
AU - Koetz, Eric
AU - Hopwood, Michael
AU - Shepherd, Adam
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/18
Y1 - 2022/3/18
N2 - An understanding of phenology and reproductive plasticity of a weed species can provide valuable information to manage it precisely. This study evaluated the phenotypic plasticity of feathertop Rhodes grass (Chloris virgata Sw.) where cohorts of four different populations (two from cropping and two from roadside situations) were initiated in early spring (4 September), late spring (4 November), mid-summer (4 January), and early autumn (4 March) in southern New South Wales (NSW), Australia. The team grew individual plants in the absence of competition under natural conditions. Life-history and fitness-related traits of both phenology and morphology were measured, and dry biomass of vegetative and reproductive parts were determined at physiological maturity. Among the four sowing times, the late-spring sowing treatment took the longest time from emergence to the first seed head emergence (70–110 days), while it had the shortest seed maturity period (8–16 days). Length of reproductive and total life period of the four populations differed across the four sowing-time treatments. The plants that emerged in mid-summer had the longest reproductive period (30 days) whereas the early-autumn emerging plants died before the reproductive stage because of the cold temperatures during winter. The mid-summer cohort required slightly longer time (63–85 days) to achieve seed head formation and less time (19–24 days) for seed maturity than those plants that emerged in early or late spring. All the reproductive features were varied by sowing times and population. The number of seed heads (12–15 per plant) and spikelets (12–13 per seed head), as well as the seed head biomass, re-productive biomass allocation pattern, and seed production, generally increased in the mid-summer-emerged cohort. Seed production in the mid-summer (9942 seeds/plant) cohort was 10% and 70% higher than the late spring (8000 seeds/plant) and early spring (3240 seeds/plant) cohorts, respectively. The ratio of reproductive biomass to vegetative biomass increased in the mid-summer sowing times in all populations, and this species displayed true plasticity in reproductive allocation. Additionally, the four populations of feathertop Rhodes grass differed significantly in phenological, vegetative, and reproductive traits, depending on the sowing time. The reproductive fitness of the four populations varied, with the two roadside populations (FELT 04/20 and STURT/16–17) appearing to be better adapted than the two cropping populations (PARK 01/20 and GLEN 03/18). The results from our study could help construct a basic framework for a variety of weed-management tactics to achieve successful control.
AB - An understanding of phenology and reproductive plasticity of a weed species can provide valuable information to manage it precisely. This study evaluated the phenotypic plasticity of feathertop Rhodes grass (Chloris virgata Sw.) where cohorts of four different populations (two from cropping and two from roadside situations) were initiated in early spring (4 September), late spring (4 November), mid-summer (4 January), and early autumn (4 March) in southern New South Wales (NSW), Australia. The team grew individual plants in the absence of competition under natural conditions. Life-history and fitness-related traits of both phenology and morphology were measured, and dry biomass of vegetative and reproductive parts were determined at physiological maturity. Among the four sowing times, the late-spring sowing treatment took the longest time from emergence to the first seed head emergence (70–110 days), while it had the shortest seed maturity period (8–16 days). Length of reproductive and total life period of the four populations differed across the four sowing-time treatments. The plants that emerged in mid-summer had the longest reproductive period (30 days) whereas the early-autumn emerging plants died before the reproductive stage because of the cold temperatures during winter. The mid-summer cohort required slightly longer time (63–85 days) to achieve seed head formation and less time (19–24 days) for seed maturity than those plants that emerged in early or late spring. All the reproductive features were varied by sowing times and population. The number of seed heads (12–15 per plant) and spikelets (12–13 per seed head), as well as the seed head biomass, re-productive biomass allocation pattern, and seed production, generally increased in the mid-summer-emerged cohort. Seed production in the mid-summer (9942 seeds/plant) cohort was 10% and 70% higher than the late spring (8000 seeds/plant) and early spring (3240 seeds/plant) cohorts, respectively. The ratio of reproductive biomass to vegetative biomass increased in the mid-summer sowing times in all populations, and this species displayed true plasticity in reproductive allocation. Additionally, the four populations of feathertop Rhodes grass differed significantly in phenological, vegetative, and reproductive traits, depending on the sowing time. The reproductive fitness of the four populations varied, with the two roadside populations (FELT 04/20 and STURT/16–17) appearing to be better adapted than the two cropping populations (PARK 01/20 and GLEN 03/18). The results from our study could help construct a basic framework for a variety of weed-management tactics to achieve successful control.
KW - adaptive mechanism
KW - and climate change
KW - biomass allocation
KW - reproductive fitness
UR - http://www.scopus.com/inward/record.url?scp=85127423477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127423477&partnerID=8YFLogxK
U2 - 10.3390/agronomy12030736
DO - 10.3390/agronomy12030736
M3 - Article
AN - SCOPUS:85127423477
SN - 2073-4395
VL - 12
JO - Agronomy
JF - Agronomy
IS - 3
M1 - 736
ER -