TY - JOUR
T1 - Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere
AU - Kanse, Omkar Shankarrao
AU - Weckert, Melanie
AU - Kadam, Tukaram Angadrao
AU - Bhosale, Hemalata Janardhanrao
N1 - Includes bibliographical references.
PY - 2015/3
Y1 - 2015/3
N2 - A promising biotechnological strategy in the management of phosphorus (P) fertilization is the use of phosphate-solubilizing fungi to solubilize rock phosphates and allow the recovery of unavailable P fixed to soil particles. Phosphate-solubilizing rhizosphere fungus, Talaromyces funiculosus SLS8, isolated from Neem (Azadirachta indica) on saline soil, was tolerant to environmental stressors, salinity and agricultural systemic fungicides. Phosphate solubilization under different nutritional conditions was investigated by culturing T. funiculosus SLS8 in Pikovskaya liquid medium containing different nitrogen sources (ammonium sulfate, casein, urea, potassium nitrate or sodium nitrate) and carbon sources (glucose, fructose, galactose or sucrose), NaCl, and three systemic fungicides. The highest concentration of solubilised phosphate (187 mg P L-1) was achieved after 5 days of incubation in the medium with glucose and ammonium sulphate. The culture pH decreased from 6.5 to 4.2 and HPLC demonstrated organic acid production. Phosphate solubilized was highly negatively correlated with pH (r = -0.96). Increasing salinity had no effect on phosphate solubilization. The maximum tolerance limits to systemic fungicides carbendazim, mancozeb, and hexaconazole were 12.5 ?g mL-1, 2,000 ?g mL-1 and 250 ?l mL-1 respectively. At these concentrations carbendazim, mancozeb and hexaconazole were found to decrease phosphate solubilization by 55 %, 37 %, and 30 %, respectively. Our results indicate that T. funiculosus SLS8 may be a potential candidate for the development of a biofertilizer for maintaining available phosphate levels in environmentally stressed soils such as saline agricultural soils impacted by systemic fungicide application or seed treatment.
AB - A promising biotechnological strategy in the management of phosphorus (P) fertilization is the use of phosphate-solubilizing fungi to solubilize rock phosphates and allow the recovery of unavailable P fixed to soil particles. Phosphate-solubilizing rhizosphere fungus, Talaromyces funiculosus SLS8, isolated from Neem (Azadirachta indica) on saline soil, was tolerant to environmental stressors, salinity and agricultural systemic fungicides. Phosphate solubilization under different nutritional conditions was investigated by culturing T. funiculosus SLS8 in Pikovskaya liquid medium containing different nitrogen sources (ammonium sulfate, casein, urea, potassium nitrate or sodium nitrate) and carbon sources (glucose, fructose, galactose or sucrose), NaCl, and three systemic fungicides. The highest concentration of solubilised phosphate (187 mg P L-1) was achieved after 5 days of incubation in the medium with glucose and ammonium sulphate. The culture pH decreased from 6.5 to 4.2 and HPLC demonstrated organic acid production. Phosphate solubilized was highly negatively correlated with pH (r = -0.96). Increasing salinity had no effect on phosphate solubilization. The maximum tolerance limits to systemic fungicides carbendazim, mancozeb, and hexaconazole were 12.5 ?g mL-1, 2,000 ?g mL-1 and 250 ?l mL-1 respectively. At these concentrations carbendazim, mancozeb and hexaconazole were found to decrease phosphate solubilization by 55 %, 37 %, and 30 %, respectively. Our results indicate that T. funiculosus SLS8 may be a potential candidate for the development of a biofertilizer for maintaining available phosphate levels in environmentally stressed soils such as saline agricultural soils impacted by systemic fungicide application or seed treatment.
KW - P solubilization
KW - Penicillium funiculosum
KW - Salinity
KW - Systemic fungicides
KW - Talaromyces funiculosus
U2 - 10.1007/s13213-014-0839-6
DO - 10.1007/s13213-014-0839-6
M3 - Article
SN - 1590-4261
VL - 65
SP - 85
EP - 93
JO - Annals of Microbiology
JF - Annals of Microbiology
IS - 1
ER -