Abstract
The Shockleyï'½Readï'½Hall model (SRHM) and its simplified model (SSRHM) were used to describe the characteristics of a photoconductive semiconductor switch (PCSS) made from a semi-insulating (SI) gallium arsenide (GaAs) chip, biased at low voltage, and illuminated by a 1.064ï'½ï'½m laser pulse. These characteristics include the free carrier densities, dynamic photoresistance, and time evolution of output pulses of the PCSS. The deep donor EL2 centers in SI GaAs play a dominant role in both the SRHM and SSRHM as electrons at EL2 unionized centers are strongly excited by the subband-gap photons at the wavelength of 1.064ï'½ï'½m. Theoretical modeling on the evolution of the experimental measured output pulses led to a two-step micromechanism of electron excitation process within the GaAs chip. The minimum photoresistances predicted by the SSRHM are in good agreement with experimental measurements, which confirms the dominant role of EL2 in the generation of electric pulses from a SI GaAs photoconductivity switch on which the 1064 nm laser pulse is illuminated.
Original language | English |
---|---|
Pages (from-to) | 023101-023101 |
Number of pages | 1 |
Journal | Journal of Applied Physics |
Volume | 106 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2009 |