Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers

Lachlan J. Schwarz, Brenda K. Y. Leung, Basil Danylec, Simon J. Harris, Reinhard I. Boysen, Milton T. W. Hearn

Research output: Contribution to journalArticle

3 Downloads (Pure)

Abstract

Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM) as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.
Original languageEnglish
Article number13
Pages (from-to)1-13
Number of pages13
JournalC: Journal of Carbon Research
Volume4
Issue number1
DOIs
Publication statusPublished - 12 Feb 2018

Fingerprint

Phytosterols
Polymers
Stigmasterol
Monomers
Sterols
Ergosterol
Molecular modeling
Methacrylates
Aldehydes
Amides
Hydroxyl Radical
Functional groups
Resins
Cholesterol
Polymerization
brassicasterol
Costs

Cite this

Schwarz, L. J., Leung, B. K. Y., Danylec, B., Harris, S. J., Boysen, R. I., & Hearn, M. T. W. (2018). Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers. C: Journal of Carbon Research, 4(1), 1-13. [13]. https://doi.org/10.3390/c4010013
Schwarz, Lachlan J. ; Leung, Brenda K. Y. ; Danylec, Basil ; Harris, Simon J. ; Boysen, Reinhard I. ; Hearn, Milton T. W. / Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers. In: C: Journal of Carbon Research. 2018 ; Vol. 4, No. 1. pp. 1-13.
@article{ec86df0951b04cb48c1e42029e6987ff,
title = "Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers",
abstract = "Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM) as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.",
author = "Schwarz, {Lachlan J.} and Leung, {Brenda K. Y.} and Basil Danylec and Harris, {Simon J.} and Boysen, {Reinhard I.} and Hearn, {Milton T. W.}",
note = "M1 - 1",
year = "2018",
month = "2",
day = "12",
doi = "10.3390/c4010013",
language = "English",
volume = "4",
pages = "1--13",
journal = "C: Journal of Carbon Research",
issn = "2311-5629",
number = "1",

}

Schwarz, LJ, Leung, BKY, Danylec, B, Harris, SJ, Boysen, RI & Hearn, MTW 2018, 'Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers', C: Journal of Carbon Research, vol. 4, no. 1, 13, pp. 1-13. https://doi.org/10.3390/c4010013

Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers. / Schwarz, Lachlan J.; Leung, Brenda K. Y.; Danylec, Basil; Harris, Simon J.; Boysen, Reinhard I.; Hearn, Milton T. W.

In: C: Journal of Carbon Research, Vol. 4, No. 1, 13, 12.02.2018, p. 1-13.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers

AU - Schwarz, Lachlan J.

AU - Leung, Brenda K. Y.

AU - Danylec, Basil

AU - Harris, Simon J.

AU - Boysen, Reinhard I.

AU - Hearn, Milton T. W.

N1 - M1 - 1

PY - 2018/2/12

Y1 - 2018/2/12

N2 - Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM) as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.

AB - Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM) as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.

U2 - 10.3390/c4010013

DO - 10.3390/c4010013

M3 - Article

VL - 4

SP - 1

EP - 13

JO - C: Journal of Carbon Research

JF - C: Journal of Carbon Research

SN - 2311-5629

IS - 1

M1 - 13

ER -