Probing the expression and adhesion of glycans involved in <i>Helicobacter pylori</i> infection

Daniel Sijmons, Simon Collett, Caroline Soliman, Andrew J Guy, Andrew M Scott, Lindy G Durrant, Aaron Elbourne, Anna K Walduck, Paul A Ramsland

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
2 Downloads (Pure)

Abstract

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.

Original languageEnglish
Article number8587
Pages (from-to)1-15
Number of pages15
JournalScientific Reports
Volume14
Issue number1
DOIs
Publication statusPublished - 13 Apr 2024

Fingerprint

Dive into the research topics of 'Probing the expression and adhesion of glycans involved in <i>Helicobacter pylori</i> infection'. Together they form a unique fingerprint.

Cite this