TY - JOUR
T1 - Quantitative Analysis of Brain Asymmetry by Using the Divergence Measure
T2 - Normal-Pathological Brain Discrimination
AU - Volkau, Ihar
AU - Bhanu Prakash, KN
AU - Ananthasubramaniam, Anand
AU - Gupta, Varsha
AU - Aziz, Aamer
AU - Nowinski, Wieslaw L.
N1 - Imported on 12 Apr 2017 - DigiTool details were: Journal title (773t) = Academic Radiology. ISSNs: 1076-6332;
PY - 2006
Y1 - 2006
N2 - Rationale and Objectives: The human brain demonstrates approximate bilateral symmetry of anatomy, function, neurochemical activity, and electrophysiology. This symmetry reflected in radiological images may be affected by pathology. Hence quantitative analysis of brain symmetry may enable the normal and pathological brain discrimination. We propose a method based on the Jeffreys divergence measure (J-divergence), which attempts to quantify "approximate symmetry" and also aids to classify the brain as bilaterally symmetrical/asymmetrical (normal/abnormal). Materials and Methods: The dataset included studies of 101 patients (59 without detectable pathologies and 42 with different abnormalities). First, the midsagittal plane is computed for the volume data that divides the head into two hemispheres. The J-divergence is calculated from the density functions of intensities of both the hemispheres. Statistical analysis was conducted to find the best distribution for normal/abnormal datasets. Results: Statistical tests showed that the lognormal distribution best characterizes the values of the J-divergence for both normal and abnormal cases, and the threshold value for the Jeffreys divergence measure to classify the brains with and without detectable pathologies is T = 0.007. The threshold value had a sensitivity of 88.1% and specificity of 90.9%. Conclusion: The proposed method is fast and simple to compute. The high sensitivity and specificity indicate the results are encouraging. This method can be used for the initial analysis of data, detection of pathology, classification of dataset as presumably normal/abnormal, and localization of abnormality.
AB - Rationale and Objectives: The human brain demonstrates approximate bilateral symmetry of anatomy, function, neurochemical activity, and electrophysiology. This symmetry reflected in radiological images may be affected by pathology. Hence quantitative analysis of brain symmetry may enable the normal and pathological brain discrimination. We propose a method based on the Jeffreys divergence measure (J-divergence), which attempts to quantify "approximate symmetry" and also aids to classify the brain as bilaterally symmetrical/asymmetrical (normal/abnormal). Materials and Methods: The dataset included studies of 101 patients (59 without detectable pathologies and 42 with different abnormalities). First, the midsagittal plane is computed for the volume data that divides the head into two hemispheres. The J-divergence is calculated from the density functions of intensities of both the hemispheres. Statistical analysis was conducted to find the best distribution for normal/abnormal datasets. Results: Statistical tests showed that the lognormal distribution best characterizes the values of the J-divergence for both normal and abnormal cases, and the threshold value for the Jeffreys divergence measure to classify the brains with and without detectable pathologies is T = 0.007. The threshold value had a sensitivity of 88.1% and specificity of 90.9%. Conclusion: The proposed method is fast and simple to compute. The high sensitivity and specificity indicate the results are encouraging. This method can be used for the initial analysis of data, detection of pathology, classification of dataset as presumably normal/abnormal, and localization of abnormality.
KW - Abnormality detection
KW - Brain asymmetry
KW - Jeffreys divergence measure
U2 - 10.1016/j.acra.2006.01.043
DO - 10.1016/j.acra.2006.01.043
M3 - Article
SN - 1076-6332
VL - 13
SP - 752
EP - 758
JO - Academic Radiology
JF - Academic Radiology
IS - 6
ER -