Regrowth of spring canola (Brassica napus) after defoliation

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Aims: Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates. Methods: We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.
Results: Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g−1 for the half-defoliated treatment and 13 cm2.g−1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.
Conclusions:The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.
Original languageEnglish
Pages (from-to)655-668
Number of pages14
JournalPlant and Soil
Issue number1-2
Publication statusPublished - 2013


Dive into the research topics of 'Regrowth of spring canola (Brassica napus) after defoliation'. Together they form a unique fingerprint.

Cite this